home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add

реклама - advertisement



Математика каменных кругов

Очень часто в ходе исследований простейший, казалось бы, вопрос, заданный самому себе, может привести к новым, удивительным наблюдениям, а иногда — и к новым открытиям.

Давайте задумаемся — как создавались каменные круги Европы? Речь не о том, как транспортировались и устанавливались многотонные камни — сейчас мы уже хорошо знаем, что инженерная мысль у наших предков работала великолепно. Речь о том, как именно им удавалось выстраивать ряды камней по геометрически абсолютно правильным линиям — будь то круги, эллипсы или еще более сложные фигуры, известные, например, на Британских островах. Действительно, точность построения древних каменных кругов подчас поражает. Так, например, в знаменитом Кольце Бродгара (Оркнейские острова), имеющем диаметр более полусотни метров и состоящем из 58 камней, лишь 9 камней отклоняются от абсолютной окружности более, чем на 50 см, — и это при том, что со времени их установки прошли тысячелетия, которые не могли не сказаться на точности. Иначе говоря, погрешность, которую допустили «инженеры» Кольца Бродгара, значительно меньше 1 % — и это очень небольшая погрешность. А ведь Кольцо Бродгара — не самый «точный» в этом отношении памятник: погрешность, допущенная при строительстве Стоунхенджа, почти на порядок меньше…

Когда в середине ушедшего, XX, века британский профессор А. Том (а именно он был пионером в этом вопросе) выступил со своими математическими исследованиями британских мегалитических сооружений, доказывающими поразительную точность их построения и, главное, сложность их геометрии, многие современные ему ученые ответили на его публикации откровенным смехом. Эти ученые — противники А. Тома — были, разумеется, правы в том, что человек Бронзового века не мог владеть современной аналитической геометрией, но при этом они категорически ошибались в самой посылке своих доводов. Так, например, для того чтобы начертить на земле классическую равномерную Архимедову спираль, совершенно не нужно знать ее уравнение в полярных координатах или в параметрическом виде; вполне достаточно вкопать в землю толстый деревянный столб, привязать к нему веревку или длинный ремень и обходить столб по кругу. Конец ремня, наворачивающегося на столб и, соответственно, укорачивающегося с каждым оборотом, будет описывать именно равномерную Архимедову спираль.

Вернемся к каменным кругам. Достаточно легко представить, как создавались каменные круги, имеющие форму правильной окружности. Для этого нужно вбить в центре будущего круга деревянный кол; взять ремень или веревку длиной в диаметр круга, сложить ее пополам и связать в кольцо; один конец получившейся петли накинуть на центральный кол, а в другой на полном натяжении петли вставить колышек, который и будет очерчивать по земле окружность. Далее остается только обойти вокруг центрального кола; петля же здесь нужна для того, чтобы ремень скользил по центральному колу, а не наворачивался на него — иначе получится спираль, а не окружность.

Однако значительное количество — практически половина — известных каменных кругов Европы имеют более сложную форму, чем окружность; в большинстве случаев это правильный эллипс — достаточно сложная замкнутая кривая, в простейшем случае вырождающаяся в окружность. Очевидно, что эллипсовидные каменные круги Европы не являются «ошибкой», допущенной при создании «круглых кругов»: во-первых, мы уже говорили о точности, с которой работали строители мегалитов; во-вторых, о каком отклонении от круга можно говорить, например, когда длина каменного эллипса вдвое превышает его ширину; и, наконец, речь ведь идет именно об эллипсе — вполне конкретной геометрической фигуре, — а вовсе не о произвольном овале. Иначе говоря, вытянутые каменные круги вытянуты намеренно и, более того, в соответствии с определенными математическими законами.

Мы уже упоминали тот факт, что большинство новгородских каменных кругов («молодых» по сравнению с британскими) также имеют вытянутую форму. Само по себе это, возможно, еще ни о чем не говорит, но вот то, что упомянутый выше круг у деревни Коломо представляет собой точный эллипс с фокальным расстоянием 4,17 м и эксцентриситетом 0,47, уже заставляет задуматься…

Впрочем, вернемся к вопросу о том, как наши предки вычерчивали на поверхности земли столь сложные кривые.

Итак, с кругом все просто: центральный кол и ременная (веревочная) петля, длина которой равна диаметру круга. Все просто рассчитать и просто — оставляя в стороне техническо-бытовые проблемы — реализовать.

С эллипсом все значительно сложнее. В рамках аналитической геометрии форма эллипса элементарно описывается в параметрическом виде, чуть сложнее — в полярных координатах, очень сложно — привычных декартовых. Но древние строители мегалитов, как мы уже упоминали, вряд ли владели высшей математикой; зато в их распоряжении были вторичные свойства кривых: так, например, описанный выше очевидный способ построения окружности основан на том, что окружность — это геометрическое место точек, равноудаленных от некоей точки, которая и является ее центром.

В отличие от окружности, эллипс определяется не одной точкой-центром, но двумя точками, которые называются его фокусами и лежат на главной (длинной) его оси. Уникальное свойство эллипса заключается в том, что сумма расстояний от любой его точки до фокуса-1 и до фокуса-2 неизменна. А поскольку расстояние между фокусами неизменно по определению, то это дает нам (и нашим предкам) способ построения эллипса на местности, минуя хитрости аналитической геометрии. Достаточно вбить в землю два столба, накинуть на них все ту же ременную петлю и обойти, удерживая петлю в натяжении, эти столбы вокруг: фигура, которую очертит на земле ввязанный в петлю колышек, и будет эллипсом!

Мегалиты Русской равнины

Просто? Отнюдь нет. Проблема заключается в том, что требуется-то не произвольный эллипс, а эллипс с более или менее заданными длиной и шириной (вряд ли каменные круги, на сооружение которых нередко уходили десятилетия, а то и века, создавались «просто так», наобум). Геометрическая задача: на каком расстоянии нужно расположить столбы-фокусы, чтобы получить, следуя вышеописанной технологии, эллипс с нужными длиной и шириной?

Сейчас эта задачка решается элементарно: несложно показать, что длина эллипса, его ширина и расстояние между фокусами связаны теоремой Пифагора, т. е.:

Мегалиты Русской равнины

Определив таким образом расстояние между столбами, несложно посчитать и требуемую длину петли — она будет равна расстоянию между столбами плюс заданную длину каменного эллипса (говоря современным языком — удвоенной сумме фокального расстояния и большой полуоси эллипса).

Но все это легко в XXI веке, когда теорему Пифагора изучают едва не в начальных классах школы. Строители же мегалитов вряд ли владели теоремой Пифагора, какой бы простой она ни казалась нам. Что же оставалось им — очевидно, древнейший и многократно проверенный практикой путь эмпирики, путь «проб и ошибок». Иначе говоря, им требовалось опытным путем подобрать такое соотношение между длинами трех отрезков, чтобы, сложенные концами, они образовывали прямоугольный треугольник, — тогда его гипотенуза будет пропорциональна длине эллипса, один из катетов — ширине эллипса, а другой — искомому расстоянию между столбами. И уж конечно, таковое соотношение должно выражаться целыми числами — вряд ли тысячи лет назад строителям мегалитов было удобно работать с дробями…

…Природа, как сказал герой одного советского фантастического фильма, ставит перед нами труднейшие задачи, но она же всегда предлагает нам способ их разрешения. Дело в том, что существует так называемый простейший «пифагоров треугольник», являющийся прямоугольным при том, что длины его сторон пропорциональны небольшим целым числам: 3:4:5. Действительно, 32 + 42 = 52. Кто знает, что было бы, если бы такого треугольника не существовало… Но он существует, и на его основе построена геометрия очень многих мегалитических сооружений Западной Европы; известный исследователь британских мегалитов Джон Вуд даже назвал его в этой связи «вездесущим треугольником 3:4:5». Существуют и другие пифагоровы треугольники (т. е. прямоугольные треугольники, соотношение сторон которых выражается целыми числами), например, треугольник 8:15:17 или 5:12:13; многие из них также обнаружены в геометрии мегалитических сооружений Западной Европы, и все-таки классический 3:4:5 встречается в мегалитах чаще всего.

Итак, что же нужно было древнему мастеру, чтобы построить «каменный эллипс» заданных размеров? Прежде всего — знать несколько пифагоровых треугольников (или хотя бы один, простейший) — наверняка это знание было сакрализовано и передавалось от учителя к ученику. Последовательность действий мастера должна была быть примерно такой (представим, что нам нужен эллипс длиной 10 метров и воспользуемся классическим треугольником 3:4:5):

1. Определить центр будущего эллипса и отметить его колышком. Наметить, в каком направлении будет проходить длинная ось эллипса.

2. Раз требуется длина 10 метров, то расстояние между столбами должно быть 6 метров, а ширина эллипса получится 8 метров (по соотношению 3: 4: 5). Стало быть, нужно отмерить вдоль намеченной длинной оси эллипса по 3 метра в каждую сторону от центрального колышка и в полученных точках вбить по столбу.

3. Взять веревку, длина которой равна сумме длины будущего эллипса и расстояния между столбами (т. е. 16 метров), и завязать ее в петлю.

4. Накинуть эту петлю на вбитые в землю столбы, взяться за веревку и отойти от столбов на максимально возможное расстояние — так, чтобы веревка натянулась. Затем обойти столбы вокруг, поддерживая натяжение веревки и отмечая свой путь на поверхности земли, — полученная замкнутая кривая и будет эллипсом нужного размера…

При желании читатель может воспроизвести эти действия и «экспериментально» убедиться, что данная простая технология работает. Единственное отличие описанной технологии от той, которую, вероятно, использовали наши предки, обусловлено отсутствием у последних рулетки или иного способа отмерять произвольные расстояния — именно с этим, в частности, и связано требование целых чисел в «базовом» треугольнике. Наверняка при проведении описанных построений они использовали некую шаблонную меру или целое число шаблонных мер (например, шаг или размах рук) — благо использование пифагоровых треугольников позволяло не дробить эту меру.


…До сих пор мы говорили о Европе в целом — не считая одного упоминания о том, что Коломский каменный круг имеет форму точного эллипса. Теперь же обратимся к каменным кругам Русского Севера — посмотрим на них немного более пристально.

Итак, каменный круг у деревни Сущево, описанный еще Н. К. Рерихом в 1899 году{125}. Размеры круга: 14,0x17,5 м. Соответственно, его параметры:

Большая полуось 8,75 м = 5 раз по 1,75 м

Малая полуось 7,00 м = 4 раза по 1,75 м

Фокальное расст. 5, 25 м = 3 раза по 1,75 м

«Вездесущий треугольник» мегалитов! Можно спорить о том, насколько этот факт случаен, но факт остается фактом: геометрия Сущевского каменного круга подчинена тому же минимальному пифагорову треугольнику, что и геометрия многих вытянутых каменных кругов Западной Европы. Впрочем, случайное совпадение маловероятно: обратите внимание на использованный модуль — 175 см. Это — древнерусская сажень{126}, упоминаемая в письменных источниках уже в XI веке!

Мегалиты Русской равнины

Каменный круг у деревни Коломо, обнаруженный и раскопанный В. Я. Конецким{127} — как уже упоминалось, правильный эллипс с фокальным расстоянием 4,17 м и эксцентриситетом 0,47 — единственный на настоящее время русский каменный круг, для которого возможен точный геометрический анализ благодаря подробной съемке Конецкого. Параметры круга:

Большая полуось 8,80 м = 8 раз по 0,52 м

Малая полуось 7,75 м = 15 раз по 0,52 м

Фокальное расст. 4, 17 м = 17 раз по 0,52 м

8:15:17 — пифагоров треугольник, следующий по распространенности за минимальным и хорошо известный в британских каменных эллипсах (82+152=172). Совпадение? Вряд ли: погрешность определения модуля — около 0,5 % (меньше сантиметра). Следует также отметить, что полная длина эллипса равна точно 10 древним саженям, что позволяет предполагать определенную «универсальность» этой древней меры длины для каменных кругов Северной Руси, хотя это предположение, разумеется, останется лишь гипотезой до более подробных исследований.

Этот перечень можно продолжить, например, рассмотрением Подгощинского круга. Однако данные о нем, к сожалению, противоречивы{128}; сам же круг разрушен. Математический анализ затрудняется еще и тем, что круг, согласно указаниям Александрова, был двойным (выше мы подробно его описывали) — неясно, как именно производились измерения. Еще одна проблема, связанная с анализом Подгощинского памятника, заключается в том, что Александров приводит размеры круга по широте и по меридиану, не указывая, являются ли эти направления главными осями (хотя это и представляется естественным, исходя из его описания). Тем не менее, грубый анализ позволяет предполагать, что Подгощинский круг был, как и Сущевский, построен на основе «вездесущего треугольника 3: 4: 5» с модулем около 136 см. К сожалению, в этом случае погрешность, обусловленная неточностью описания, слишком велика, чтобы делать однозначные утверждения.

Следует также вспомнить о тех каменных кругах, которые на настоящий момент остаются неизученными: Лукинском, Любынинском, Хутыньском и других. Анализ их геометрии — дело будущего (хочется верить, ближайшего), а его результаты позволят, вероятно, сделать окончательные выводы.

Что даст нам окончательное подтверждение того факта, что новгородские каменные круги созданы с использованием тех же математических знаний, что и хенджи Западной Европы? Это — сложный, но очень важный вопрос, для ответа на который требуется прежде всего представление о возрасте новгородских кругов{129}.

Археологические находки на кругах дают в этом отношении очень мало информации. Древнейшая обнаруженная в круге вещь — это кремневый наконечник стрелы (Коломский круг). Однако он не может служить «хронологическим репером»: известно, что в раннем Средневековье (как и в более поздние времена) подобные древние предметы нередко служили оберегами, и данный наконечник мог быть просто оставлен в круге в качестве жертвы. Другие находки — это в основном обломки керамики. Гончарная керамика не встречена ни разу, следовательно, памятуя о том, что смена лепной керамики гончарной в Новгородской Земле произошла в первой половине X века{130}, можно сделать вывод, что каменные круги в любом случае не моложе конца IX — начала X века. С другой стороны, следы древней распашки, обнаруженные В. Я. Конецким в основании того же Коломского круга, дают «ограничение снизу» по датировке — как минимум данный конкретный круг был создан уже после развития на этих землях пашенного земледелия, которое было связано с появлением здесь славян примерно в середине I тысячелетия н. э.

Итак, конечный «вердикт» — новгородские каменные круги связаны с ильменскими славянами, могут быть датированы второй половиной I тысячелетия и в конечном итоге являются, вероятно, памятниками той же археологической культуры, что и новгородские сопки (к которым круги нередко привязаны и географически, на что указывал еще Н. К. Рерих).

Теперь же вернемся к вопросу о том, что означает факт использования в новгородских каменных кругах тех же математических законов, что и в хенджах Западной Европы.

Можно предположить, конечно, что две эти традиции (действительно, столь разные!) независимы друг от друга. Но формирование знаний, о которых шла речь — геометрия эллипса, пифагоровы треугольники, — знаний, которые сейчас представляются нам простыми, — в древности в любом случае требовало веков эмпирики. Это означает, что эти знания в любом случае были приобретены осевшими вокруг озера Ильмень славянами еще в те времена, когда они жили не здесь, а на южном побережье Балтики.

Так или иначе, мы все равно выходим к первичному ареалу распространения археологической культуры воронковидных кубков, носители которой были строителями большинства мегалитических сооружений Европы и варианты которой (например, субкультура Куявских могил развитого неолита) хорошо известны на территориях, позднее ставших одной из «прародин» славян (северная Польша, северо-восточная Германия и т. д.). Разумеется, сложно говорить о прямой преемственности культуры воронковидных кубков (развивавшейся с конца IV века до н. э.) и ранних археологических культур балтийских славян, но и полного отсутствия связи между ними быть не может.

На этом — увы! — заканчиваются факты, и начинается пространное поле для гипотетических соображений. Например — о том, что то знание (наверняка сакрализованное в древности), которое население Британских островов утратило уже к I тысячелетию до н. э., основавшие Великий Новгород славяне сохранили на полтора тысячелетия дольше…


Лабиринт | Мегалиты Русской равнины | Глава 8 АСТРОНОМИЧЕСКИЕ СООРУЖЕНИЯ