H Computler Science and Data Analysis Series

R Graphics




Chapman & Hall/CRC
Computer Science and Data Analysis Series

The interface between the computer and statistical sciences is increasing,
as each discipline seeks to harness the power and resources of the other.
This series aims to foster the integration between the computer sciences
and statistical, numerical, and probabilistic methods by publishing a broad
range of reference works, textbooks, and handbooks.

SERIES EDITORS

John Lafferty, Carnegie Mellon University

David Madigan, Rutgers University

Fionn Murtagh, Royal Holloway, University of London
Padhraic Smyth, University of California, Irvine

Proposals for the series should be sent directly to one of the series editors
above, or submitted to:

Chapman & Hall/CRC
23-25 Blades Court
London SW15 2NU

UK

Published Titles

Bayesian Artificial Intelligence
Kevin B. Korb and Ann E. Nicholson

Pattern Recognition Algorithms for Data Mining
Sankar K. Pal and Pabitra Mitra

Exploratory Data Analysis with MATLAB®
Wendy L. Martinez and Angel R. Martinez

Clustering for Data Mining: A Data Recovery Approach
Boris Mirkin

Correspondence Analysis and Data Coding with Java and R
Fionn Murtagh

R Graphics
Paul Murrell

@ © 2006 by Taylor & Francis Group, LLC



ﬂ Computer Science and Data Analysis Series

R Graphics

Paul Murrell

The University of Auckland
New Zealand

* Chapman & Hall/CRC

Taylor &Francis Group

Boca Raton London New York Singapore

@ © 2006 by Taylor & Francis Group, LLC



Published in 2006 by

Chapman & Hall/CRC

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-10: 1-58488-486-X (Hardcover)
International Standard Book Number-13: 978-1-58488-486-6 (Hardcover)
Library of Congress Card Number 2005046278

This book contains information obtained from authentic and highly regarded sources. Reprinted material is
quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts
have been made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration
for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate
system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Murrell, Paul.
R graphics / Paul Murrell.
p. cm.
Includes bibliographical references and index.
ISBN 1-58488-486-X
1. Computer graphics. 2. R (Computer program language) I. Title.

T385.M9 2005
006.6—dc22 2005046278

b Visit the Taylor & Francis Web site at
ln Orma http://www.taylorandfrancis.com

) Taylor & Francis Group and the CRC Press Web site at

is the Academic Division of T&F Informa plc. http://www.crepress.com

@ © 2006 by Taylor & Francis Group, LLC


www.copyright.com
www.taylorandfrancis.com
www.crcpress.com

Preface

R is a popular open source software tool for statistical analysis and graphics.
This book focuses on the very powerful graphics facilities that R provides for
the production of publication-quality diagrams and plots.

What this book is about

This book describes the graphics system in R. The first chapter provides an
overview of the R graphics facilities. There are many pictures that demon-
strate the variety and complexity of plots and diagrams that can be produced
using R. There is a description of the different output formats that R graphics
can produce and there is a description of the overall organization of the R
graphics facilities, so that the user has some idea of where to find a function
for a particular purpose.

The most important feature of the R graphics setup is the existence of two
distinct graphics systems within R: the traditional graphics system and the
grid graphics system. Section 1.2.2 offers some advice on which system to use.
Part I of this book is concerned with the traditional graphics system, which
implements many of the “traditional” graphics facilities of the S language[11][5]
(originally developed at Bell Laboratories and available in a commercial im-
plementation as S-PLUS). The majority of R graphics functions available at
the time of writing are based upon this system. The chapters in this part of
the book describe how to work with the traditional graphics functions, with
a particular emphasis on how to modify or add output to a plot to produce
exactly the right final output. Chapter 2 describes the functions that are avail-
able to produce complete plots and Chapter 3 focuses on how to customize
the details of plots, combine multiple plots, and add further output to plots.

Part II describes the grid graphics system, which is unique to R and is much
more powerful than the traditional system. At the time of writing, there
are fewer functions based on grid for producing complete plots, but there is
more power to produce a wider range of final results. Most of the functions
that produce complete plots using grid come from Deepayan Sarkar’s lattice
package, which implements Bill Cleveland’s Trellis graphics system. This
is described in Chapter 4. The remaining chapters describe how the grid
system can be used to produce graphical scenes starting from a blank page.
In particular, there is a discussion of how to develop new graphical functions

@ © 2006 by Taylor & Francis Group, LLC



that are easy for other people to use and build on.

Appendix A provides a very brief introduction to the R system in general and
Appendix B discusses ways in which the traditional and grid graphics systems
can be combined.

The main part of the book assumes a basic familiarity with the R language
and environment. For more detailed information, the reader is directed to
the home page of the R Project (the URL is given below), which has links to
on-line documents and references to printed material.

There are a number of projects working on graphical user interfaces to R,
but the common underlying method of interaction is via a command line.
This book focuses on the production of graphical output by entering R code
interactively at the command-line interface to R and writing code in scripts
to load into R or to run as a batch job.

What this book is not about

This book does not contain discussions about which sort of plot is most appro-
priate for a particular sort of data, nor does it contain guidelines for correct
graphical presentation. In fact, instructions are provided for producing some
types of plots and graphical elements that are generally disapproved of, such
as pie charts and cross-hatched fill patterns.

The information in this book is meant to be used to produce a plot once the
format of the plot has been decided upon and to experiment with different
ways of presenting a set of data. No plot types are deliberately excluded,
partly because no plot type is all bad (e.g., a pie chart can be a very effec-
tive way to present a simple proportion) and partly because some graphical
elements, such as cross-hatching, are sometimes required by a particular pub-
lisher.

The flexibility of R graphics encourages the user not to be constrained to
thinking in terms of just the traditional types of plots. The aim of this book
is to provide lots of useful tools and to describe how to use them. There are
many other sources of information on graphical guidelines and recommended
plot types, some of which are mentioned below.

Most introductory statistics text books will contain basic guidelines for se-
lecting an appropriate type of plot. Examples of books that deal specif-
ically with the construction of effective plots and are aimed at a general
audience are “Creating More Effective Graphs” by Naomi Robbins[51] and
Edward Tufte’s “Visual Display of Quantitative Information”[60] and “Envi-
sioning Information”[61]. For more technical discussions of these issues, see
“Visualizing Data” and “Elements of Graphing Data” by Bill Cleveland|[12][13],
and “The Grammar of Graphics” by Leland Wilkinson[67].

@ © 2006 by Taylor & Francis Group, LLC



For ideas on appropriate graphical displays for particular types of analysis or
particular types of data, some starting points are “Data analysis and graph-
ics using R” by John Maindonald and John Braun[37], “An R and S-Plus
Companion to Applied Regression” by John Fox[20], “Statistical Analysis and
Data Display” by Richard Heiberger and Burt Holland[29], and “Visualizing
Categorical Data” by Michael Friendly[25].

This book is also mot a complete reference to the R system. Appendix A
provides a very brief introduction to R, but there are many freely-available
documents that provide both introductory and in-depth explanations of the R
system. The best place to start is the “Documentation” section on the home
page of the R project web site (see “On the web” on page ix). Two examples of
introductory texts are “Introductory Statistics with R” by Peter Dalgaard[18§]
and “Using R for Introductory Statistics” by John Verzani[65]; the standard
advanced text is “Modern Applied Statistics with S” by Bill Venables and
Brian Ripley[64].

Finally, this book does not describe in any detail the many graphics functions
that are available in add-on packages for R that are mot part of the stan-
dard R installation. This book only focuses on the graphics facilities that are
distributed with R by default — in particular, functions in the grDevices,
graphics, grid, and lattice packages. No attempt is made to enumerate
all existing graphics functions for R or even to list all add-on packages that
contain graphics functions; the list is very long and growing all the time. Ex-
cept where specified, all add-on packages mentioned in this book are available
from CRAN*, the main download site for R.

Differences with S-PLUS

The traditional graphics system in R is a reimplementation of the traditional
graphics system in the original S language. This means that much of what
is said about the traditional system in Part I of this book is also true for
the traditional graphics in the commercial distribution of S, S-PLUS. How-
ever, there are some important differences between traditional R graphics and
traditional S graphics, such as the specification of colors and line types by
character strings, the concept of layouts for arranging plots, and the availabil-
ity of mathematical annotation in text. These differences mean that graphics
code written for R is not guaranteed to produce the same result (or even run)
in S-PLUS. Furthermore, the grid graphics system described in Part II is not
available in S-PLUS (just as the S-PLUS editable graphics are not available in
R).

This book focuses on the graphics systems available in R so specific differences

*The Comprehensive R Archive Network; http://cran.r-project.org

@ © 2006 by Taylor & Francis Group, LLC



with S-PLUS are not highlighted in the main text. However, much of what is
said in Part I will also apply to traditional graphics in S-PLUS.

Who should read this book

This book should be of interest to a variety of R users. For people who are
new to R, this book provides an overview of the graphics system, which is
useful for understanding what to expect from R’s graphics functions and how
to modify or add to the output they produce. For this purpose, Chapter 1 and
Chapter 2 are a good starting point from which to begin producing standard
plots, but you will soon need to start dipping into Chapter 3 in order to fine
tune your plots. It would also be worthwhile to take a look at Chapter 4 to
see what Trellis plots can do.

For intermediate-level R users, this book provides all of the information neces-
sary to perform sophisticated customizations of plots produced in R. As with
many software applications, it is possible to work with R for years and remain
unaware of important and useful features. This book will be useful in making
users aware of the full scope of R graphics, and in providing a description of
the correct model for working with R graphics. Sections 1.2, 1.3, and Chapters
3 and 4 should be read first. Chapters 5, 6, and 7 should be read by users
interested in experimenting with novel graphical displays.

For advanced R users, this book contains vital information for producing co-
herent, reusable, and extensible graphics functions. Advanced users should
pay particular attention to Part II.

Conventions used in this book

This book describes a large number of R functions and there are many code
examples. Samples of code that could be entered interactively at the R com-
mand line are formatted as follows:

> 1:10

where the > denotes the R command-line prompt and everything else is what
the user should enter. When an expression is longer than a single line it will
look like this:

> plot(1:10, 1:10, col="blue", lty="dashed",
axes=FALSE, type="1")

with the additional lines indented appropriately.

Often, the functions described in this book are used for the side-effect of
producing graphical output, so the result of running a function is represented

@ © 2006 by Taylor & Francis Group, LLC



by a figure. In cases where the result of a function is a value that we might
be interested in, the result will be shown below the code that produced it and
will be formatted as follows:

[1J 1 2 3 4 5 6 7 8 910

In some places, an entirely new R function is defined. Such code would nor-
mally be entered into a script file and loaded into R in one step (rather than
being entered at the command line), so the code for new R functions will be
presented in a figure and formatted as follows:

1 myfun <- function(x, y) {
2 plot(x ,y)
3}

with line numbers provided for easy reference to particular parts of the code
from the main text.

When referring to a function within the main text, it will be formatted in
a typewriter font and will have parentheses after the function name, e.g.,
plotO).

When referring to the arguments to a function or the values specified for the
arguments, they will also be formatted in a typewriter font, but they will
not have any parentheses at the end, e.g., x, y, or col="red".

When referring to an S3 class, statements will be of the form: “the
"classname" class,” using a typewriter font with the class name in double-
quotes. However, when referring to an object that is an instance of a class,
statements will be of the form: “the classname object,” using a typewriter
font, but without the double-quotes around the class name.

On the web

There is a web site (URL below) with errata and links to pages of PNG
versions of all figures from the book and the R code used to produce them.

http://www.stat.auckland.ac.nz/ paul/RGraphics/rgraphics.html

There is also an RGraphics package containing functions to produce the figures
in this book and all functions, classes, and methods defined in the book (see
especially Chapter 7). This package is available from CRAN (see the footnote
on page vii).

@ © 2006 by Taylor & Francis Group, LLC


www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html

Version information

Software development is an ongoing process and this book can only provide
a snapshot of R’s graphics facilities. The descriptions and code samples in
this book are accurate for R version 2.1.0 and above. Apart from a couple
of places, mostly in Chapter 7, code examples are also accurate for R version
2.0.1. In each of these cases, there is a footnote to highlight the difference
and, if possible, to provide information about how to modify the code so that
it will work in R version 2.0.1. Much of the content of Part I is also accurate
for earlier versions of R, but specific areas of incompatibility are not indicated
in the text.

A new “minor” version of R is released approximately every six months. The
most up-to-date information on the most recent versions of R and grid are
available in the on-line help pages and at the home pages for the R Project
and the grid package:

http://www.R-project.org/
http://www.stat.auckland.ac.nz/ paul/grid/grid.html

Acknowledgements

R graphics could not exist without R itself, so the first thanks go to Ross Thaka
and Robert Gentleman for starting the whole thing. Thanks to the R Core
Team in general for making R such a reliable, high-quality piece of software,
and to the wider R community for making working with R so rewarding and
enjoyable.

The traditional R graphics system owes most of its success and popularity to
the excellence of the design of the original S graphics system. Most credit for
the R-specific extensions to the traditional system is due to Ross Thaka. For
the grid system, I am almost entirely to blame.

With regard to this book in particular, I would like to thank John Cham-
bers, Ross Thaka, Duncan Murdoch, Stefano Tacus, Deepayan Sarkar, and the
anonymous reviewers for valuable feedback on the manuscript.*

Last, and most, thank you Ju.

Auckland, Paul Murrell
New Zealand,

*This manuscript was generated on a Fedora Core 1 Linux system using the IATEX doc-
ument preparation system, Friedrich Leisch’s Sweave package, several of the GNU software
tools, and of course R.

@ © 2006 by Taylor & Francis Group, LLC


www.R-project.org/
www.stat.auckland.ac.nz/

Contents

List of Figures
List of Tables

1 An Introduction to R Graphics
1.1 R graphics examples
1.1.1  Standard plots
1.1.2  Trellis plots
1.1.3  Special-purpose plots
1.1.4  General graphical scenes
1.2 The organization of R graphics
1.2.1  Types of graphics functions
1.2.2  Traditional graphics versus grid graphics
1.3  Graphical output formats
1.3.1  Graphics devices
1.3.2  Multiple pages of output
1.3.3  Display lists

I TRADITIONAL GRAPHICS

2 Simple Usage of Traditional Graphics

2.1 The traditional graphics model

2.2 Plots of one or two variables
2.2.1  Arguments to graphics functions
2.2.2  Standard arguments

2.3 Plots of multiple variables

2.4 Modern plots and specialized plots

2.5 Interactive graphics

3 Customizing Traditional Graphics
3.1  The traditional graphics model in more detail
3.1.1 Plotting regions
3.1.2  The traditional graphics state
3.2 Controlling the appearance of plots
3.2.1  Colors
3.2.2  Lines

@ © 2006 by Taylor & Francis Group, LLC



3.2.3 Text
3.2.4  Data symbols
3.2.5  Axes
3.2.6  Plotting regions
3.2.7  Clipping
3.2.8  Moving to a new plot
3.3 Arranging multiple plots
3.3.1  Using the traditional graphics state
3.3.2 Layouts
3.3.3  The split-screen approach
3.4 Annotating plots
3.4.1  Annotating the plot region
3.4.2  Missing values and non-finite values
3.4.3 Annotating the margins
3.4.4  Legends
3.4.5  Axes
3.4.6  Mathematical formulae
3.4.7  Coordinate systems
3.4.8 Bitmap images
3.4.9  Special cases
3.5  Creating new plots
3.5.1 A simple plot from scratch
3.5.2 A more complex plot from scratch
3.5.3  Writing traditional graphics functions

I GRID GRAPHICS

4 Trellis Graphics: the Lattice Package

4.1  The lattice graphics model
4.1.1  Lattice devices

4.2 Lattice plot types
4.2.1 The formula argument and multipanel conditioning
4.2.2 A nontrivial example

4.3  Controlling the appearance of lattice plots

4.4 Arranging lattice plots

4.5  Annotating lattice plots
4.5.1  Panel functions and strip functions
4.5.2  Adding output to a lattice plot

4.6  Creating new lattice plots

5 The Grid Graphics Model
5.1 A brief overview of grid graphics
5.1.1 A simple example
5.2 Graphical primitives

@ © 2006 by Taylor & Francis Group, LLC



5.3

0.4

9.5

5.6
5.7
5.8

5.2.1

Standard arguments

Coordinate systems

5.3.1
5.3.2

Conversion functions
Complex units

Controlling the appearance of output

5.4.1  Specifying graphical parameter settings

5.4.2  Vectorized graphical parameter settings

Viewports

5.5.1  Pushing, popping, and navigating between viewports
5.5.2  Clipping to viewports

5.5.3  Viewport lists, stacks, and trees

5.5.4  Viewports as arguments to graphical primitives

5.5.5  Graphical parameter settings in viewports

5.5.6  Layouts

Missing values and non-finite values
Interactive graphics
Customizing lattice plots

5.8.1
5.8.2

Adding grid output to lattice output
Adding lattice output to grid output

6 The Grid Graphics Object Model
Working with graphical output

6.1

6.2

6.3

6.4

6.5

6.6
6.7

6.1.1

Standard functions and arguments

Grob lists, trees, and paths

6.2.1
6.2.2
6.2.3

Graphical parameter settings in gIrees
Viewports as components of glrees
Searching for grobs

Working with graphical objects off-screen

6.3.1

Capturing output

Placing and packing grobs in frames

6.4.1

Placing and packing off-screen

Other details about grobs

6.5.1
6.5.2

Calculating the sizes of grobs
Editing graphical context

Saving and loading grid graphics
Working with lattice grobs

7 Developing New Graphics Functions and Objects
An example

7.1

7.2

7.1.1

Modularity

Simple graphics functions

7.2.1
7.2.2
7.2.3
7.2.4

Embedding graphical output
Facilitating annotation
Editing output

Absolute versus relative sizes

@ © 2006 by Taylor & Francis Group, LLC



7.3 Graphical objects
7.3.1  Overview of creating a new graphical class
7.3.2  Defining a new graphical class
7.3.3  Validating grobs
7.3.4  Drawing grobs
7.3.5  Editing grobs
7.3.6  Sizing grobs
7.3.7 Pre-drawing and post-drawing
7.3.8  Completing the example
7.3.9 Reusing graphical elements
7.3.10 Other details

7.4  Querying grid

A A Brief Introduction to R

A.1 Obtaining and installing R

A.2 An environment for statistical computing and graphics
A.2.1 Batch processing
A.2.2 Data types
A.2.3 Variables
A.2.4 Indexing
A.2.5 Data structures
A.2.6 Formulae
A.2.7 Expressions
A.2.8 Packages
A.2.9 Accessing data sets
A.2.10 Getting help

A.3 A programming language
A.3.1 Debugging

A4 An object-oriented language

B Combining Traditional Graphics and Grid Graphics
B.1 The gridBase package
B.1.1  Annotating base graphics using grid
B.1.2 Embedding base graphics plots in grid viewports
B.1.3 Problems and limitations

Bibliography

@ © 2006 by Taylor & Francis Group, LLC



List of Figures

1.1 A simple scatterplot

1.2 Some standard plots

1.3 A customized scatterplot

1.4 A Trellis dotplot

1.5 A map of New Zealand produced using R
1.6 Some polar-coordinate plots

1.7 A novel decision tree plot

1.8 A table-like plot

1.9 Didactic diagrams

1.10 A music score

1.11 A piece of clip art

1.12 The structure of the R graphics system

2.1 Four variations on a scatterplot

2.2 Plotting an 1m object

2.3 Plotting an agnes object

2.4 Modifying default barplot () and boxplot () output
2.5 Standard arguments for high-level functions

2.6 Plotting three variables

2.7 Plotting multivariate data

2.8 Some modern and specialized plots

3.1 The plot regions in traditional graphics

3.2 Multiple figure regions in traditional graphics
3.3 The user coordinate system in the plot region
3.4 Figure margin coordinate systems

3.5 Outer margin coordinate systems

3.6 Predefined and custom line types

3.7 Line join and line ending styles

3.8 Alignment of text in the plot region

3.9 Font families and font faces

3.10 Data symbols available in R

3.11 Basic plot types

3.12 Different axis styles

3.13 Graphics state settings controlling plot regions
3.14 Some basic layouts

@ © 2006 by Taylor & Francis Group, LLC



3.15 Some complex layouts

3.16 Annotating the plot region
3.17 More examples of annotating the plot region
3.18 Drawing polygons

3.19 Annotating the margins

3.20 Some simple legends

3.21 Customizing axes

3.22 Mathematical formulae in plots
3.23 Custom coordinate systems
3.24 Overlaying plots

3.25 Overlaying output

3.26 Adding a bitmap to a plot

3.27 Special-case annotations

3.28 A panel function example

3.29 Annotating a 3D surface

3.30 A back-to-back barplot

3.31 A graphics function template

4.1 A scatterplot using lattice

4.2 The result of modifying a lattice object
4.3 Plot types available in lattice

4.4 A lattice multipanel conditioning plot
4.5 A complex lattice plot

4.6 Some default lattice settings

4.7  Controlling the layout of lattice panels
4.8 Arranging multiple lattice plots

4.9 Annotating a lattice plot

5.1 A simple scatterplot using grid

5.2  Primitive grid output

5.3 Drawing arrows

5.4 Drawing polygons

5.5 A demonstration of grid units

5.6 Graphical parameters for graphical primitives
5.7 Recycling graphical parameters

5.8 Recycling graphical parameters for polygons
5.9 A diagram of a simple viewport

5.10 Pushing a viewport

5.11 Pushing several viewports

5.12 Popping a viewport

5.13 Navigating between viewports

5.14 Clipping output in viewports

5.15 The inheritance of viewport graphical parameters
5.16 Layouts and viewports

5.17 Layouts and units

@ © 2006 by Taylor & Francis Group, LLC



5.18
5.19
5.20
5.21
5.22

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24

B.1
B.2

Nested layouts

Non-finite values for line-tos, polygons, and arrows
Controlling the size of lattice panels

Adding grid output to a lattice plot

Embedding a lattice plot within grid output

Modifying a circle grob

Editing grobs

The structure of a glree

Editing a glree

Using a glree to group grobs
Packing grobs by hand
Calculating the size of a grob
Grob dimensions by reference
Editing the graphical context
Editing the grobs in a lattice plot

A plot of oceanographic data

A grid.imageFun() function

Output from the grid.imageFun() function
A grid.ozFun() function

Example output from grid.ozFun()
Annotating grid.ozFun() output
Editing grid.ozFun() output

An "imageGrob" class

Some validDetails () methods

An "ozGrob" class

An "ozImage" class

Some editDetails() methods

Editing an imageGrob

Low-level editing of an imageGrob
Helper functions for a "ribbonLegend" class
A "ribbonLegend" class

An "ozKey" class

A plot of temperature data

A splitString() function

Performing calculations before drawing
A "splitText" class

Drawing faces

Some face functions

Some face objects

Annotating a traditional plot with grid
Embedding a traditional plot within lattice output

@ © 2006 by Taylor & Francis Group, LLC



List of Tables

1.1 Graphical output formats

3.1 High-level traditional graphics state settings
3.2 Low-level traditional graphics state settings
3.3 Read-only traditional graphics state settings
3.4 Functions to generate color sets

3.5 Font faces

3.6 Font families

4.1 Plotting functions in lattice
5.1 Graphical primitives in grid
5.2  Coordinate systems in grid

5.3 Graphical parameters in grid
5.4 Grid font faces

6.1 Functions for working with grobs

@ © 2006 by Taylor & Francis Group, LLC



1

An Introduction to R Graphics

Chapter preview

This chapter provides the most basic information to get started pro-
ducing plots in R. First of all, there is a three-line code example that
demonstrates the fundamental steps involved in producing a plot. This
is followed by a series of figures to demonstrate the range of images
that R can produce. There is also a section on the organization of R
graphics giving information on where to look for a particular function.
The final section describes the different graphical output formats that
R can produce and how to obtain a particular output format.

The following code provides a simple example of how to produce a plot using
R (see Figure 1.1).

> plot(pressure)
> text (150, 600,
"Pressure (mm Hg)\nversus\nTemperature (Celsius)")

The expression plot(pressure) produces a scatterplot of pressure versus
temperature, including axes, labels, and a bounding rectangle.* The call to
the text () function adds the label at the data location (150, 600) within
the plot.

*The pressure data set, available in the datasets package, contains 19 recordings of
the relationship between vapor pressure (in millimeters of mercury) and temperature (in
degrees Celsius).

© 2006 by Taylor & Francis Group, LLC



800
I
o

Pressure (mm HgQ)

o

S versus o
o Temperature (Celsius)
5
7] o

o p—
3 < o
o

8 B O

N o)

o
o

o)
© 400000000000
[ [ [ [ [ [ [ [

0O 50 100 150 200 250 300 350

temperature

Figure 1.1

A simple scatterplot of vapor pressure of mercury as a function of temperature.
The plot is produced from two simple R expressions: one expression to draw the
basic plot, consisting of axes, data symbols, and bounding rectangle; and another
expression to add the text label within the plot.

@ © 2006 by Taylor & Francis Group, LLC



This example is basic R graphics in a nutshell. In order to produce graphical
output, the user calls a series of graphics functions, each of which produces
either a complete plot, or adds some output to an existing plot. R graphics
follows a “painters model,” which means that graphics output occurs in steps,
with later output obscuring any previous output that it overlaps.

There are very many graphical functions provided by R and the add-on pack-
ages for R, so before describing individual functions, Section 1.1 demonstrates
the variety of results that can be achieved using R graphics. This should pro-
vide some idea of what users can expect to be able to achieve with R graphics.

Section 1.2 gives an overview of how the graphics functions in R are organized.
This should provide users with some basic ideas of where to look for a function
to do a specific task. Section 1.3 describes the set of functions involved with
the selection of a particular graphical output format. By the end of this
chapter, the reader will be in a position to start understanding in more detail
the core R functions that produce graphical output.

1.1 R graphics examples

This section provides an introduction to R graphics by way of a series of
examples. None of the code used to produce these images is shown, but it
is available from the web site for this book. The aim for now is simply to
provide an overall impression of the range of graphical images that can be
produced using R. The figures are described over the next few pages and the
images themselves are all collected together on pages 7 to 15.

1.1.1 Standard plots

R provides the usual range of standard statistical plots, including scatterplots,
boxplots, histograms, barplots, piecharts, and basic 3D plots. Figure 1.2 shows
some examples.*

In R, these basic plot types can be produced by a single function call (e.g.,

*The barplot makes use of data on death rates in the state of Virginia for different age
groups and population groups, available as the VADeaths data set in the datasets package.
The boxplot example makes use of data on the effect of vitamin C on tooth growth in guinea
pigs, available as the ToothGrowth data set, also from the datasets package. These and
many other data sets distributed with R were obtained from “Interactive Data Analysis” by
Don McNeil[40] rather than directly from the original source.

© 2006 by Taylor & Francis Group, LLC



pie(pie.sales) will produce a piechart), but plots can also be considered
merely as starting points for producing more complex images. For example, in
the scatterplot in Figure 1.2, a text label has been added within the body of the
plot (in this case to show a subject identification number) and a secondary
y-axis has been added on the right-hand side of the plot. Similarly, in the
histogram, lines have been added to show a theoretical normal distribution
for comparison with the observed data. In the barplot, labels have been added
to the elements of the bars to quantify the contribution of each element to the
total bar and, in the boxplot, a legend has been added to distinguish between
the two data sets that have been plotted.

This ability to add several graphical elements together to create the final
result is a fundamental feature of R graphics. The flexibility that this allows
is demonstrated in Figure 1.3, which illustrates the estimation of the original
number of vessels based on broken fragments gathered at an archaeological
site: a measure of “completeness” is obtained from the fragments at the site;
a theoretical relationship is used to produce an estimated range of “sampling
fraction” from the observed completeness; and another theoretical relationship
dictates the original number of vessels from a sampling fraction[19]. This plot
is based on a simple scatterplot, but requires the addition of many extra lines,
polygons, and pieces of text, and the use of multiple overlapping coordinate
systems to produce the final result.

For more information on the R functions that produce these standard plots,
see Chapter 2. Chapter 3 describes the various ways that further output can
be added to a plot.

1.1.2 Trellis plots

In addition to the traditional statistical plots, R provides an implementation of
Trellis plots[6] via the package lattice[54] by Deepayan Sarkar. Trellis plots
embody a number of design principles proposed by Bill Cleveland[12][13] that
are aimed at ensuring accurate and faithful communication of information via
statistical plots. These principles are evident in a number of new plot types
in Trellis and in the default choice of colors, symbol shapes, and line styles
provided by Trellis plots. Furthermore, Trellis plots provide a feature known
as “multi-panel conditioning,” which creates multiple plots by splitting the
data being plotted according to the levels of other variables.

Figure 1.4 shows an example of a Trellis plot. The data are yields of several
different varieties of barley at six sites, over two years. The plot consists of
six “panels,” one for each site. Each panel consists of a dotplot showing yield
for each site with different symbols used to distinguish different years, and a
“strip” showing the name of the site.

© 2006 by Taylor & Francis Group, LLC



For more information on the Trellis system and how to produce Trellis plots
using the lattice package, see Chapter 4.

1.1.3 Special-purpose plots

As well as providing a wide variety of functions that produce complete plots,
R provides a set of functions for producing graphical output primitives, such
as lines, text, rectangles, and polygons. This makes it possible for users to
write their own functions to create plots that occur in more specialized areas.
There are many examples of special-purpose plots in add-on packages for R.
For example, Figure 1.5 shows a map of New Zealand produced using R and
the add-on packages maps|[7] and mapproj[39].

R graphics works mostly in rectangular Cartesian coordinates, but functions
have been written to display data in other coordinate systems. Figure 1.6
shows three plots based on polar coordinates. The top-left image was pro-
duced using the stars() function. Such star plots are useful for representing
data where many variables have been measured on a relatively small number of
subjects. The top-right image was produced using customized code by Karsten
Bjerre and the bottom-left image was produced using the rose.diag() func-
tion from the CircStats package[36]. Plots such as these are useful for pre-
senting geographic, or compass-based data. The bottom-right image in Figure
1.6 is a ternary plot producing using ternaryplot () from the vcd package[41].
A ternary plot can be used to plot categorical data where there are exactly
three levels.

In some cases, researchers are inspired to produce a totally new type of plot
for their data. R is not only a good platform for experimenting with novel
plots, but it is also a good way to deliver new plotting techniques to other
researchers. Figure 1.7 shows a novel display for decision trees, visualizing the
distribution of the dependent variable in each terminal node[30].

For more information on how to generate a plot starting from an empty page
with traditional graphics functions, see Chapter 3. The grid package provides
even more power and flexibility for producing customized graphical output
(see Chapters 5 and 6), especially for the purpose of producing functions for
others to use (see Chapter 7).

1.1.4 General graphical scenes
The generality and flexibility of R graphics makes it possible to produce graph-

ical images that go beyond what is normally considered to be statistical graph-
ics, although the information presented can usually be thought of as data of

© 2006 by Taylor & Francis Group, LLC



some kind. A good mainstream example is the ability to embed tabular ar-
rangements of text as graphical elements within a plot as in Figure 1.8. This
is a standard way of presenting the results of a meta-analysis. Figure 1.12
and Figure 3.6 provide other examples of tabular graphical output produced
by R.*

R has also been used to produce figures that help to visualize important con-
cepts or teaching points. Figure 1.9 shows two examples that provide a geo-
metric representation of extensions to F-tests (provided by Arden Miller[42]).
A more unusual example of a general diagram is provided by the musical score
in Figure 1.10 (provided by Steven Miller). R graphics can even be used like
a general-purpose painting program to produce “clip art” as shown by Figure
1.11. These examples tend to require more effort to achieve the final result as
they cannot be produced from a single function call. However, R’s graphics
facilities, especially those provided by the grid system (Chapters 5 and 6),
provide a great deal of support for composing arbitrary images like these.

These examples present only a tiny taste of what R graphics (and clever and
enthusiastic users) can do. They highlight the usefulness of R graphics not
only for producing what are considered to be standard plot types (for little
effort), but also for providing tools to produce final images that are well
beyond the standard plot types (including going beyond the boundaries of
what is normally considered statistical graphics).

*All of the figures in this book, apart from the figures in Chapter 7 that only contain R
code, were produced using R.

© 2006 by Taylor & Francis Group, LLC



Histogram of Y

@ 6 -6 2

> o} _

© Bird 131 S 0.5

~ » 0.4

o 4 - 4 5

= o £ 034

3 o &

(O] -

2 2 -2 o A 02

3 S 01 -

a2 )

D:O|||||_O£ 00 -
0O 4 8 12 16 <2101 23
Travel Time (s) v

200 35

-
71.1 30 LT
66 S) - ]
54.6 g 207 ' é rot
100 543 (546 || 50 £ 151 g = .
41 =
37 ||35.1 197 Q =

50 71 26.9 80.9 i 5 4 = O Ascorbic acid

"~ 11203 19.3 o - @ Orange juice
i [ 8.7 | | 84 | L I B B B
Rural Rural Urban Urban 05 05 1 1 2 2

Male Female Male Female . .
Vitamin C dose (mg)

Cherry
Blueberry
Apple

Vanilla

Other

Boston Cream

Figure 1.2

Some standard plots produced using R: (from left-to-right and top-to-bottom) a
scatterplot, a histogram, a barplot, a boxplot, a 3D surface, and a piechart. In the
first four cases, the basic plot type has been augmented by adding additional labels,
lines, and axes. (The boxplot is adapted from an idea by Roger Bivand.)

© 2006 by Taylor & Francis Group, LLC



N =360 brokenness =0.5

o
B - X ol
™ y .
A
-
8 _ S
1) s L @
PR AN ~-—
n o s
— -7
(] 0 — R
0w A R 2
() T © o)
(] o p 7 - C
> S ¥
y— Al AP 9
: o s
s
S B4 o L« £
~— - : ™
E //._ 8
> o "
= o //
h el 7 .
- 9V}
/‘ [ B 1—.
o e
0 7 -7
o - 7 - 2
-

— T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Sampling Fraction

Figure 1.3

A customized scatterplot produced using R. This is created by starting with a simple
scatterplot and augmenting it by adding an additional y-axis and several additional
sets of lines, polygons, and text labels.

@ © 2006 by Taylor & Francis Group, LLC



Trebi [¢]
Wisconsin No. 38 +
No. 457 o (o]
Glabron
Peatland (e] +
Velvet [e] =+
No. 475 o +
Manchuria (o] +
No. 462 o
Svansota o +

Trebi [¢]
Wisconsin No. 38 (o] ++
No. 457 o +
Glabron o +
Peatland o o i
Velvet
No. 475 Q +
Manchuria o
No. 462 o
Svansota [e] 4+

Trebi +0O

Wisconsin No. 38 +
No. 457 :‘: o o
Glabron
Peatland +
Velvet =+ (@]
No. 475 +

Manchuria
No. 462 ++
Svansota =+
u

Trebi o +
Wisconsin No. 38 o
0. 4

No. 457 o
Glabron (o]

Peatland O
Velvet (o] +
No. 475 +. 0
Manchuria $‘
No. 462 o -+
o +

Svansota

Trebi -+
Wisconsin No. 38
No. 457 (¢] +
Glabron (o] +
Peatland Q—
Velvet O—'C-)
No. 475 +
Manchuria (o] +
No. 462 o+
Svansota o+

Trebi Q

Wisconsin No. 38 (]

No. 457 (o]
Glabron | O
Peatland
Velvet + o

No.475 | O
Manchuria O +
No. 462 o+
I

Svansota (0]

Barley Yield (bushels/acre)

Figure 1.4

A Trellis dotplot produced using R. The relationship between the yield of barley and
species of barley is presented, with a separate dotplot for different experimental sites
and different plotting symbols for data gathered in different years. This is a small
modification of Figure 1.1 from Bill Cleveland’s “Visualizing Data” (reproduced with
permission from Hobart Press).

@ © 2006 by Taylor & Francis Group, LLC



Auckland —>

Figure 1.5

A map of New Zealand produced using R, Ray Brownrigg’s maps package, and
Thomas Minka’s mapproj package. The map (of New Zealand) is drawn as a se-
ries of polygons, and then text, an arrow, and a data point have been added to
indicate the location of Auckland, the birthplace of R. A separate world map has

been drawn in the bottom-right corner, with a circle to help people locate New
7AaalanAd

@ © 2006 by Taylor & Francis Group, LLC



Motor Trend Cars

disp
cyl
hp
mg W E
drat
gsec
wt S
Marked
90
[
180 0
[ ]
O
o
270
None Some

Figure 1.6

Some polar-coordinate plots produced using R (top-left), the CircStats package by
Ulric Lund and Claudio Agostinelli (top-right), and code submitted to the R-help
mailing list by Karsten Bjerre (bottom-left). The plot at bottom-right is a ternary
plot produced using the vcd package (by David Meyer, Achim Zeileis, Alexandros
Karatzoglou, and Kurt Hornik)

© 2006 by Taylor & Francis Group, LLC



vari
p < 0.001

<0.059 >0.059
<0.046 >0.046
<0.005 >0.005
/
Node 4 (n = 51) Node 5 (n = 22) Node 6 (n = 14) Node 7 (n = 109)
14 14 1 4 14
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4
0.2 1 0.2 — 0.2 4 0.2 —
0 T T 0 T T 0 T T 0 T T
glau  norm glau  norm glau  norm glau  norm

Figure 1.7

A novel decision tree plot, visualizing the distribution of the dependent variable
in each terminal node. From code under development by Torsten Hothorn, Kurt
Hornik, Achim Zeileis, and Friedrich Leisch and planned to appear on CRAN as the

package party.

@ © 2006 by Taylor & Francis Group, LLC



Centre cases

Carcinoma in situ

Philippines 319 i
>

Thailand 327 L 1
All in situ 1462

]

I

Invasive cancer ;
Colombia 96 >

I

I

]

Spain 115 =
All invasive 211 —_—
All 1673 &
I T T 1
0 1 2 3 4
OR

Figure 1.8
A table-like plot produced using R. This is a typical presentation of the results
from a meta-analysis. The original motivation and data were provided by Martyn
Plummer[48].

@ © 2006 by Taylor & Francis Group, LLC






A Little Culture

D u , , ,
[ - 1 I I I I 1 1 1 N |
:ll X — . ' i ﬂ i ' ‘ ' ‘ I
| L L A 1 1)

C
5
]
<
>
2
Q
o
=
T
&
Iy
3
Bl

Figure 1.10

A music score produced using R (code by Steven Miller).

Once upon a time ...

Figure 1.11
A piece of clip art produced using R.

@ © 2006 by Taylor & Francis Group, LLC



1.2 The organization of R graphics

This section briefly describes how R’s graphics functions are organized so that

the user knows where to start looking for a particular function.

The R graphics system can be broken into four distinct levels: graphics pack-
ages; graphics systems; a graphics engine, including standard graphics devices;

and graphics device

Graphics
Packages

Graphics
Systems

Graphics
Engine
&
Devices

Graphics
Device
Packages

Figure 1.12
The structure of the
graphics functions in

packages (see Figure 1.12).

graphics

grDevices

—
«Q
=
P
@)
@
<.
[}
(0]
-
—
—

R graphics system showing the main packages that provide
R. Arrows indicate where one package builds on the functions
in another package. The packages described in this book are highlighted with thicker

borders and grey backgrounds.

@ © 2006 by Taylor & Francis Group, LLC



The core R graphics functionality described in this book is provided by the
graphics engine and the two graphics systems, traditional graphics and grid.
The graphics engine consists of functions in the grDevices package and pro-
vides fundamental support for handling such things as colors and fonts (see
Section 3.2), and graphics devices for producing output in different graphics
formats (see Section 1.3).

The traditional graphics system consists of functions in the graphics package
and is described in Part I. The grid graphics system consists of functions in
the grid package and is described in Part II.

There are many other graphics functions provided in add-on graphics pack-
ages, which build on the functions in the graphics systems. Only one such
package, the lattice package, is described in any detail in this book. The
lattice package builds on the grid system to provide Trellis plots (see Chap-
ter 4).

There are also add-on graphics device packages that provide additional graph-
ical output formats.

1.2.1 Types of graphics functions

Functions in the graphics systems and graphics packages can be broken down
into three main types: high-level functions that produce complete plots; low-
level functions that add further output to an existing plot; and functions for
working interactively with graphical output.

The traditional system, or graphics packages built on top of it, provide the
majority of the high-level functions currently available in R. The most signifi-
cant exception is the lattice package (see Chapter 4), which provides complete
plots based on the grid system.

Both the traditional and grid systems provide many low-level graphics func-
tions, and grid also provides functions for interacting with graphical output
(editing, extracting, deleting parts of an image).

Most functions in graphics packages produce complete plots and typically offer
specialized plots for a specific sort of analysis or a specific field of study. For
example: the hexbin package[10] from the BioConductor project has functions
for producing hexagonal binning plots for visualizing large amounts of data;
the maps package[7] provides functions for visualizing geographic data (see, for
example, Figure 1.5); and the package scatterplot3d[35] produces a variety
of 3-dimensional plots. If there is a need for a particular sort of plot, there
is a reasonable chance that someone has already written a function to do it.
For example, a common request on the R-help mailing list is for a way to
add error bars to scatterplots or barplots and this can be achieved via the

© 2006 by Taylor & Francis Group, LLC



functions plotCI() from the gplots package in the gregmisc bundle or the
errbar () function from the Hmisc package. There are some search facilities
linked off the main R home page web site to help to find a particular function
for a particular purpose (also see Section A.2.10).

While there is no detailed discussion of the high-level graphics functions in
graphics packages other than lattice, the general comments in Chapter 2 con-
cerning the behavior of high-level functions in the traditional graphics system
will often apply as well to high-level graphics functions in graphics packages
built on the traditional system.

1.2.2 Traditional graphics versus grid graphics

The existence of two distinct graphics systems in R raises the issue of when
to use each system.

For the purpose of producing complete plots from a single function call, which
graphics system to use will largely depend on what type of plot is required.
The choice of graphics system is largely irrelevant if no further output needs
to be added to the plot.

If it is necessary to add further output to a plot, the most important thing to
know is which graphics system was used to produce the original plot. In gen-
eral, the same graphics system should be used to add further output (though
see Appendix B for ways around this).

In some cases, the same sort of plot can be produced by both lattice and
traditional functions. The lattice versions offer more flexibility for adding
further output and for interacting with the plot, plus Trellis plots have a
better design in terms of visually decoding the information in the plot.

For producing graphical scenes starting from a blank page, the grid system
offers the benefit of a much wider range of possibilities, at the cost of a having
to learn a few additional concepts.

For the purpose of writing new graphical functions for others to use, grid
again provides better support for producing more general output that can be
combined with other output more easily. Grid also provides more possibilities
for interaction.

© 2006 by Taylor & Francis Group, LLC



1.3 Graphical output formats

At the start of this chapter (page 1), there is a simple example of the sort of R
expressions that are required to produce a plot. When using R interactively,
the result is a plot drawn on screen. However, it is also possible to produce
a file that contains the plot, for example, as a PostScript document. This
section describes how to control the format in which a plot is produced.

R graphics output can be produced in a wide variety of graphical formats.
In R’s terminology, output is directed to a particular output device and that
dictates the output format that will be produced. A device must be created or
“opened” in order to receive graphical output and, for devices that create a file
on disk, the device must also be closed in order to complete the output. For
example, for producing PostScript output, R has a function postscript()
that opens a file to receive PostScript commands. Graphical output sent to
this device is recorded by writing PostScript commands into the file. The
function dev.off () closes a device.

The following code shows how to produce a simple scatterplot in PostScript
format. The output is stored in a file called myplot.ps:

> postscript(file="myplot.ps")
> plot(pressure)
> dev.off ()

To produce the same output in PNG format (in a file called myplot.png), the
code simply becomes:

> png(file="myplot.png")
> plot(pressure)
> dev.off ()

When working in an interactive session, output is often produced, at least
initially, on the screen. When R is installed, an appropriate screen format is
selected as the default device and this default device is opened automatically
the first time that any graphical output occurs. For example, on the various
Unix systems, the default device is an X11 window so the first time a graphics
function gets called, a window is created to draw the output on screen. The
user can control the format of the default device using the options () function.

© 2006 by Taylor & Francis Group, LLC



Table 1.1
Graphics formats that R supports and the functions that open
an appropriate graphics device

Device Function Graphical Format

Screen/GUI Devices

x11() or X110 X Window window
windows () Microsoft Windows window
quartz () Mac OS X Quartz window
File Devices

postscript () Adobe PostScript file

pdf O Adobe PDF file

pictex() ETEX PicTEX file

xfig() XFIG file

bitmap () GhostScript conversion to file
png() PNG bitmap file

jpegO JPEG bitmap file

(Windows only)
win.metafile() Windows Metafile file

bmp () Windows BMP file

Devices provided by add-on packages

devGTK () GTK window (gtkDevice)
devJava() Java Swing window (RJavaDevice)
devSVG() SVG file (RSvgDevice)

1.3.1 Graphics devices

Table 1.1 gives a full list of functions that open devices and the output formats
that they correspond to.

All of these functions provide several arguments to allow the user to specify
things such as the physical size of the window or document being created. The
documentation for individual functions should be consulted for descriptions
of these arguments.

It is possible to have more than one device open at the same time, but only
one device is currently “active” and all graphics output is sent to that device.

If multiple devices are open, there are functions to control which device is
active. The list of open devices can be obtained using dev.1list (). This gives
the name (the device format) and number for each open device. The function
dev.cur () returns this information only for the currently active device. The
dev.set () function can be used to make a device active, by specifying the

© 2006 by Taylor & Francis Group, LLC



appropriate device number and the functions dev.next() and dev.prev()
can be used to make the next/previous device on the device list the active
device.

All open devices can be closed at once using the function graphics.off ().
When an R session ends, all open devices are closed automatically.

1.3.2 Multiple pages of output

For a screen device, starting a new page involves clearing the window before
producing more output. On Windows there is a facility for returning to pre-
vious screens of output (see the “History” menu, which is available when a
graphics window has focus), but on most screen devices, the output of previ-
ous pages is lost.

For file devices, the output format dictates whether multiple pages are sup-
ported. For example, PostScript and PDF allow multiple pages, but PNG does
not. It is usually possible, especially for devices that do not support multiple
pages of output, to specify that each page of output produces a separate file.
This is achieved by specifying the argument onefile=FALSE when opening
a device and specifying a pattern for the file name like file="myplot%03d"
so that the %034 is replaced by a three-digit number (padded with zeroes)
indicating the “page number” for each file that is created.

1.3.3 Display lists

R maintains a display list for each open device, which is a record of the output
on the current page of a device. This is used to redraw the output when
a device is resized and can also be used to copy output from one device to
another.

The function dev.copy () copies all output from the active device to another
device. The copy may be distorted if the aspect ratio of the destination device
— the ratio of the physical height and width of the device — is not the same as
the aspect ratio of the active device. The function dev.copy2eps () is similar
to dev.copy (), but it preserves the aspect ratio of the copy and creates a file
in EPS (Encapsulated PostScript) format that is ideal for embedding in other
documents (e.g., a IWTEX document). The dev2bitmap() function is similar
in that it also tries to preserve the aspect ratio of the image, but it produces
one of the output formats available via the bitmap() device.

The function dev.print () attempts to print the output on the active device.
By default, this involves making a PostScript copy and then invoking the print
command given by options("printcmd").

© 2006 by Taylor & Francis Group, LLC



The display list can consume a reasonable amount of memory if a plot is par-
ticularly complex or if there are very many devices open at the same time.
For this reason it is possible to disable the display list, by typing the expres-
sion dev.control(displaylist="inhibit"). If the display list is disabled,
output will not be redrawn when a device is resized, and output cannot be
copied between devices.

Chapter summary

R graphics can produce a wide variety of graphical output, including
(but not limited to) many different kinds of statistical plots, and the
output can be produced in a wide variety of formats. Graphical output
is produced by calling functions that either draw a complete plot or
add further output to an existing plot.

There are two main graphics systems in R: a traditional system similar
to the original S graphics system and a newer grid system that is
unique to R. Additional graphics functionality is provided by a large
number of add-on packages that build on these graphics systems.

© 2006 by Taylor & Francis Group, LLC



2

Simple Usage of Traditional Graphics

Chapter preview

This chapter introduces the main high-level plotting functions in the
traditional graphics system. These are the functions used to produce
complete plots such as scatterplots, histograms, and boxplots. This
chapter describes the names of the standard plotting functions, the
standard ways to call these functions, and some of the standard argu-
ments that can be used to vary the appearance of the plots. Some of
this information is also applicable to high-level plotting functions in
other add-on packages.

The aim of this chapter is to provide an idea of the range of functions that
are available in the traditional graphics system, to point the user toward the
most important ones, and introduce the standard approach to using them.

The graphics functions that make up the traditional graphics system are pro-
vided in an add-on package called graphics, which is automatically loaded in
a standard installation of R. In a non-standard installation, it may be neces-
sary to make the following call in order to access traditional graphics functions
(if the graphics package is already loaded, this will not do any harm).

> library(graphics)

This chapter mentions all of the high-level graphics functions in the graphics
package, but does not describe all possible uses of these functions. For detailed
information on the behavior of individual functions the user should consult
the individual help pages using the help() function (or help.start() for a

@ © 2006 by Taylor & Francis Group, LLC



web-browser interface). For example, the following code shows the help page
for the barplot() function.

> help(barplot)

Another useful way of learning about a graphics function is to use the
example () function. This runs the code in the “Examples” section of the help
page for a function. The following code runs the examples for barplot ().

> par (ask=TRUE)
> example(barplot)

The par (ask=TRUE) is important to ensure that the user is prompted before
each new page; without it the examples tend to flash by too fast for them to
be viewed properly.

2.1 The traditional graphics model

As described at the start of Chapter 1, a plot is created in traditional graphics
by first calling a high-level function that creates a complete plot, then calling
low-level functions to add more output if necessary.

Traditional graphics functions always produce output on the current device
(see Section 1.3.1 for information on devices and selecting a current device
when more than one device is open). There is also the concept of a “current
plot,” and all low-level functions add output to the current plot. If there is
only one plot per page, then a high-level function starts a new plot on a new
page. There may be multiple plots on a page (see Section 3.3), and in this
case a high-level function starts the next plot on the same page, only starting
a new page when the number of plots per page is exceeded.

The main persistent record of graphical output is the device output — a
window on screen or a file on disk. The only way to edit graphical output is
to modify and rerun the original R code, or to produce output in a format
that can be edited using third-party software (e.g., the output from an xfig()
device can be edited using the xfig program; on Windows, the metafile format
can be edited by a number of different programs).

@ © 2006 by Taylor & Francis Group, LLC



2.2 Plots of one or two variables

The traditional graphics system provides a standard set of basic plot types.
The plot () function produces scatterplots, the barplot () function produces
barplots, hist() produces histograms, boxplot() produces boxplots, and
pie() produces piecharts (see Figure 1.2 for example output).

R does not make a major distinction between, for example, scatterplots that
only plot data symbols at each (x, y) location and scatterplots that draw
straight lines connecting the (x, y) locations (line plots). These are just
variations on the basic scatterplot, controlled by a type argument. This is
demonstrated by the following code, which produces four different plots by
varying the value of the type argument (see Figure 2.1).

y <= rnorm(20)

plot(y, type="p")
plot(y, type="1")
plot(y, type="b")
plot(y, type="h")

V V V V V

R also does not make a distinction between a plot of a single set of data and
a plot containing multiple series of data. Additional data series can be added
to a plot using low-level functions such as points () and lines() (see Section
3.4.1; also see the function matplot () below).

The first argument to these high-level functions is the data to plot, but there
is a reasonable amount of flexibility in the way that the data can be specified.
For example, each of the following calls to plot () can be used to produce the
scatterplot in Figure 1.1 (with small variations in the axis labels). In the first
case, all of the data to plot are specified in a single data frame. In the second
case, separate x and y variables are specified. In the third case, the data to
plot are specified as a formula.

> plot(pressure)
> plot(pressure$temperature, pressure$pressure)
> plot(pressure ~ temperature, data=pressure)

All of the basic plotting functions in the traditional graphics system are generic
(see Section A.4). One consequence of this has just been described — there
are several ways to specify the data to plot — but this also means that in some
cases the plot that the functions produce depends on the type of arguments

@ © 2006 by Taylor & Francis Group, LLC



o
SV o -
o
- 0© -
o o
> o o o %o Og6 > o 4
o
%o o
- [ -
[ o [
o
¥ o ¥
T T T T T T T T
5 10 15 20 5 10 15 20
Index Index
o
SV o -
o
\
- 0© -

o >o_‘l

> o o |
O AW A O
Oo o
- o -
[ / o / [
o
¥ o ¥
T T T T T T T T
5 10 15 20 5 10 15 20
Index Index
Figure 2.1

Four variations on a scatterplot. In each case, the plot is produced by a call to
the plot () function with the same data; all that changes is the value of the type
argument.

@ © 2006 by Taylor & Francis Group, LLC



passed to the functions. This is most relevant to the plot () function, which,
for example, will produce boxplots if the x variable is a factor. Another
example is shown in the code below. Here an 1m object is created from a call
to the Im() function. When this object is passed to the plot () function, the
special plot method for 1m objects produces several regression diagnostic plots
(see Figure 2.2).*

> 1m.SR <- 1lm(sr ~ poplb5 + pop75 + dpi + ddpi,
data = LifeCycleSavings)
> plot(1lm.SR)

In many cases, add-on graphics packages provide new plots by defining a new
method for the plot () function. For example, the cluster package[52] pro-
vides a plot () method for plotting the result of an agglomerative hierarchical
clustering procedure[32][53][56] (an agnes object). This method produces a
special “bannerplot” and a dendrogram from the data (see the following code
and Figure 2.3). The first five expressions are just setting up the data; the
last two expressions create an agnes object and then plot it.

ai <- agnes(iris[subset, 1:4])
plot(ai, labels = cS)

> subset <- sample(1:150, 20)

> cS <- as.character(Sp <- iris$Species[subset])
> cS[Sp == "setosa"] <- "S"

> cS[Sp == "versicolor"] <- "V"

> cS[Sp == "virginica"] <- "g"

>

>

The matplot () function is not a plot () method, but it is specifically designed
to work like plot () with x or y given as matrices. This function is a convenient
way to plot multiple data series on a single scatterplot. Different data series
are automatically distinguished by using different data symbols and colors.

In addition to the very traditional set of plots, there is a function for producing
scatterplots of a single variable, stripchart (), a function for drawing curves
representing a mathematical function, curve (), and a function for producing
a character-based stem-and-leaf plot, stem().

*The data used in this example are measures relating to the savings ratio (aggregate
personal saving divided by disposable income) averaged over the period 1960-1970 for 50
countries, available as the data set LifeCycleSavings in the datasets package.

fThe data used in this example are the famous iris data data set giving measurements
of physical dimensions of three species of iris, available as the iris data set in the datasets
package.

@ © 2006 by Taylor & Francis Group, LLC



Residuals vs Fitted Normal Q-Q plot

® 4
Sa ZambiaO ZambiaO
° o N7
v 40 o o é
o o [e] [ ——
3 00000y o
3 o0 @ o° K
n O ° o ° N
0] o o o (] T O
o 00 q)o o 5
Nl o T
oo o
o o
e "o
! T T T T T T T T T T T
6 8 10 12 14 16 -2 -1 0 1 2
Fitted values Theoretical Quantiles
. , .
Scale—Location plot Cook’s distance plot
ZambiaO
[Te) Libyal
= o 0
C\! -
° o
% oo o o
S o o o
o o 8 N A
? o (o] c ©
2 2 11%o o 5]
(¢] o )
® ° % o o 2
N o o o0& ° S
S Lo x
I+] o o o o 9
T Q = 1
g7 ao °% o© ©°
o
2 o ° ° 8 4
° : 10,1
o | 8 _ ..I.|.||.||I||.||. A L T L1 S I||||| || |
i T T T T T T © T T T T T T
6 8 10 12 14 16 0 10 20 30 40 50
Fitted values Obs. number
Figure 2.2

Plotting an 1m object. There is a special plot () method for 1m objects that produces
four diagnostic plots from the results of a linear model analysis.

@ © 2006 by Taylor & Francis Group, LLC



Banner of agnes(x = iris[subset, 1:4])

T
couaea<<ne naea<eaaa<n<Qaaaq

0 0.5 1 15 2 25 3 3.5 4
Height
Agglomerative Coefficient = 0.86

Dendrogram of agnes(x = iris[subset, 1:4])

[
®
=
2 o o
o
I
_—
o —|
@ »
o
odo o > o >>0on

iris[subset, 1:4]
Agglomerative Coefficient = 0.86

Figure 2.3

Plotting an agnes object. There is a special plot() method for agnes objects that
produces plots relevant to the results of an agglomerative hierarchical clustering
analysis.

@ © 2006 by Taylor & Francis Group, LLC



Some add-on graphics packages provide useful extensions on the standard plot
types. For example, the Hmisc package[26] provides the labcurve () function
for drawing a plot with lines through multiple data series and text labels
attached to each line.

2.2.1 Arguments to graphics functions

It is often the case, especially when producing graphics for publication, that
the output produced by a single call to a high-level graphics function is not
exactly right. There are many ways in which the output of graphics functions
may be modified and Chapter 3 addresses this topic in full detail. This section
will only consider the possibility of specifying arguments to high-level graphics
functions in order to modify their output.

Many of these arguments are specific to a particular function. For example,
the boxplot () function has width and boxwex arguments (among others) for
controlling the width of the boxes in the plot, and the barplot () function has
a horiz argument for controlling whether bars are drawn horizontally rather
than vertically.

The following code shows examples of the use of the boxwex argument for
boxplot () and the horiz argument for barplot () (see Figure 2.4).*

In the first example, there are two calls to boxplot (), which are identical
except that the second specifies that the individual boxplots should be half as
wide as they would be by default (boxwex=0.5).

> boxplot(decrease ~ treatment, data = OrchardSprays,
log = "y", col="light grey")

> boxplot(decrease ~ treatment, data = OrchardSprays,
log = "y", col="light grey",
boxwex=0.5)

In the second exameple, there are two calls to barplot (), which are identical
except that the second specifies that the bars should be drawn horizontally
rather than vertically (horiz=TRUE).

*The data in the boxplot example are from an experiment to test the effectiveness
of different orchard spray constituents in repelling honeybees, available as the data set
OrchardSprays in the datasets package. The data used in the barplot example are from
the VADeaths data set (see page 3).

@ © 2006 by Taylor & Francis Group, LLC



50
HI F -
{11+
H[H
-
50
HIF -
1+
HflH
{1+

20
|
[+
|_ -
20
|
F -

10
10

UF
30
UM
20
RF
10
RM
0- T T T 1
2 & = L e e & 8
Figure 2.4

Modifying default barplot () and boxplot () output. The top two plots are produced
by calls to the boxplot () function with the same data, but with different values of
the boxwex argument. The bottom two plots are both produced by calls to the
barplot() function with the same data, but with different values of the horiz
argument.

@ © 2006 by Taylor & Francis Group, LLC



> barplot(VADeaths[1:2,], angle = c(45, 135),
density = 20, col = "grey",
names=c("RM", "RF", "UM", "UF"))

> barplot(VADeaths[1:2,], angle = c(45, 135),
density = 20, col = "grey",
names=c("RM", "RF", "UM", "UF"),
horiz=TRUE)

In general, the user should consult the documentation for the specific function
to determine which arguments are available and what effect they have.

2.2.2 Standard arguments

Despite the existence of many arguments that are specific only to a single
graphics function, there are several arguments that are “standard” in the sense
that many high-level functions will accept them.

Most high-level functions will accept graphical parameters controlling such
things as color (col), line type (1ty), and text font. Section 3.2 provides a
full list of these arguments and describes their effects. In many cases, these
arguments are not given as explicitly named arguments to the high-level func-
tion, but are accepted via the ellipsis argument (.. .).

Unfortunately, because the interpretation of these standard arguments may
vary in some cases, some care is necessary. For example, if the col argument
is specified for a standard scatterplot, this only affects the color of the data
symbols in the plot (it does not affect the color of the axes, or the axis labels),
but for the barplot () function, col specifies the color for the fill or pattern
used within the bars.

In addition to the standard graphical parameters, there are standard argu-
ments to control the appearance of axes and labels on plots. It is usually
possible to modify the range of the axis scales on a plot by specifying x1im
or ylim arguments in the call to the high-level function, and often there is a
set of arguments for specifying the labels on a plot: main for a title, sub for
a sub-title, x1ab for an x-axis label and ylab for a y-axis label.

Although there is no guarantee that these standard arguments will be accepted
by high-level functions in add-on graphics packages, in many cases they will
be accepted, and they will have the expected effect.

The following code shows examples of setting some of these standard argu-
ments for the plot() function (see Figure 2.5). All of the calls to plot()
draw a scatterplot with lines connecting the data values: the first call uses a
wider line (1wd=3), the second call draws the line a grey color (col="grey"),

@ © 2006 by Taylor & Francis Group, LLC



the third call draws a dashed line (1ty="dashed"), and the fourth call uses a
much wider range of values on the y-scale (ylim=c(-4, 4)).

y <- rnorm(20)

plot(y, type="1", 1lwd=3)
plot(y, type="1", col="grey")
plot(y, type="1", lty="dashed")
plot(y, type="1", ylim=c(-4, 4))

V V V VvV V

In cases where the default output from a high-level function cannot be mod-
ified to produce the desired result by specifying arguments to the high-level
function, possible options are to add further annotation (see Section 3.4), or
to generate the entire plot from scratch (see Section 3.5).

Some high-level functions provide an argument to inhibit some of the default
output in order to assist in the customization of a plot. For example, the
default plot () function has an axes argument to allow the user to inhibit the
drawing of axes and the user can then produce customized output to represent
the axis (see Section 3.4.5).

2.3 Plots of multiple variables

The traditional graphics system provides a number of functions for visualizing
high-dimensional data. For plots of three variables there are: the persp()
function for producing 3D surfaces; contour() and filled.contour() for
producing contours to represent the values of the third variable; image (),
which produces a grid of rectangles and uses color to represent the value of the
third variable; and symbols(), which uses a symbol (e.g., a circle of varying
radius) to represent the third variable. Figure 2.6 shows some examples of
the output from these functions.*

For the special case of two dichotomous variables grouped by a third variable
(data from a 2 by 2 by k contingency table), there is the fourfoldplot()
function, which creates a “fourfold display”[23].

*The data used to produce the 3-D surface, contour, and image plots are topographic
measurements of Maunga Whau (Mt. Eden), a dormant volcano in Auckland, New Zealand,
available as the data set volcano in the datasets package. The data were digitally captured
from a topographic map by Ross Ihaka. The data used for the symbols() plot are physical
measurements of black cherry trees, available as the trees data set in the datasets package.

@ © 2006 by Taylor & Francis Group, LLC



e ] e ]
- -
0 0
(=] (=]
S <
o S
0 0
T T

5 10 15 20 5 10 15 20
I ¥ 7
I
e I
- [N \
| 1 l\ -
1 ! ,\
0 | . \ "
o | \ ] \
| \ 1 \ o —
1 ! I' \ a
! v
g N : \ ,I\ ! -7 N
] VA \ r]
. AN ~
o |\ v
S o ! \
! ! 1] T -
T T T T T T T T
5 10 15 20 5 10 15 20

Figure 2.5

Standard arguments for high-level functions. All four plots are produced by calls to
the plot () function with the same data, but with different standard plot function
arguments specified: the top-left plot makes use of the 1lwd argument to control line
thickness; the top-right plot uses the col argument to control line color; the bottom-
left plot makes use of the 1ty argument to control line type; and the bottom-right
plot uses the ylim argument to control the scale on the y-axis.

@ © 2006 by Taylor & Francis Group, LLC



symbols()

persp()
o _]
© O
5 g
g ] Oo O.. °
o ° .. °
N ] o ..’ ..
I I I I I I I
60 70 80 90
contour()

Figure 2.6

Plotting three variables. Clockwise from top-left: a 3D surface, a plot where a third
variable is represented by the size of the plotting symbols, an image plot where a
third variable is represented using color, and a contour plot.

@ © 2006 by Taylor & Francis Group, LLC



For data sets containing more than three variables, there is the pairs() func-
tion for producing a matrix of scatterplots (plotting each variable against all
other variables), the function stars() for producing “star” plots of contin-
uous variables, and the mosaicplot() function for producing a mosaicplot
of categorical data[28][24]. Figure 2.7 shows examples of the output of these
functions.*

Some important add-on graphics packages provide more extensive facilities for
producing representations of multi-dimensional data. For 3D plots, there is
the scatterplot3d package[35] and the rgl package[2]. The latter provides
some access to the visualization capabilities of OpenGL so there are advanced
visualization features like the ability to interactively rotate plots and special
lighting and surface effects. The Rggobi package[33] provides an interface
between R and the ggobi program[57], which offers a number of techniques
for visualizing many variables, including the grand tour[17].

The standard arguments described in the previous section for standard plots
of one or two variables are less well supported for plotting three or more
variables.

2.4 Modern plots and specialized plots

The traditional graphics system, and add-on graphics packages that have built
on it, contain a number of functions to produce plots that are relatively mod-
ern (i.e., not provided by all statistical software packages), or that are suited
to a particular type of data or analysis technique, or that are specific to a
particular area of research.

The traditional system has functions that implement several of the plots de-
veloped by Bill Cleveland based on principles of human perception. The
dotchart () function creates a dotplot (see the top-left plot in Figure 2.8%)
and the coplot () function creates a conditioning plot (an example is shown
in Figure 3.28). For a much wider range of plots of this kind, see Chapter 4,
which describes Trellis plots.

*The data used for the scatterplot matrix are the iris data (see page 29). The data used
in the stars() plot are measures of fuel consumption and automobile design, available as
the mtcars data set in the datasets package. The data used for the mosaicplot are records
of survival rates and demographic measures for passengers on the Titanic, available as the
Titanic data set in the datasets package.

TThe data set used in this example are from the VADeaths data set (see page 3).

@ © 2006 by Taylor & Francis Group, LLC



0
O~
L o
Sepal.Length -3
[ w
<
o _|
<
o Sepal.Width
9]
o
o
N~
To)
Petal.Length
— ™
0
[aV]
0
- Petal.Width
[Te)
S 7|l Ch
TTTTTTT T T T T 11
45 60 75 1 383 5 7
Male Female
° No Yes NoYes
E [ ] [ ] | || |
Maz: X4 Wag o
Mazda RX4 Datsun 710
Hornet 4 Drive % V& =
Hornet Sportabout .8
<

% Merc 240D

Duster 360

Figure 2.7

Plotting multivariate data. At the top is a scatterplot matrix (a scatterplot for every
combination of a set of variables), at bottom-left is a variation on a star plot, and
at bottom-right is a mosaicplot.

@ © 2006 by Taylor & Francis Group, LLC



50-54 _
UF o ™
UM o
RF o o
RM [0}
55-59
UF o O —e . o .
UM o
RF o P 0 °
RM o
60-64 . °
UF o
UM ° @ - .
RF o [ I 1
RM o
T T T T T _3 0 3
0 10 20 30 40
Texas I
Colorado
Georgia
Tennessee
Arkansas
Missouri
New Jersey
Massachusetts
Rhode Island
o SeEgeEELEEEIRE
Oklahoma gg Sggggggggg%g
Wyoming %ggggg-gzgﬁgg.gg
Oregon o= %8<3 2= é)g
Washington b4 ‘g
n

Figure 2.8
Some modern and specialized plots. Clockwise from top-left are: a (Cleveland)
dotplot, a sunflower plot, and two variations on a dendrogram.

@ © 2006 by Taylor & Francis Group, LLC



There are several functions for helping to plot data when data symbols over-
lap in a standard scatterplot. The sunflowerplot() function can be useful
when identical data values repeat a small number of times. In these plots, a
“flower” is produced at each location with a “petal” for each replication (see the
top-right plot in Figure 2.8). When the data are voluminous, the hexbin()
function from the hexbin package is useful for plotting regions representing
data density rather than plotting individual data points. A similar approach
is to bin the data and use one of contour () or image (). It is also worth men-
tioning the jitter () function, which does no drawing, but adds a very small
random amount to data values in order to separate values that are originally
identical.

There are functions that are particularly aimed at representing categori-
cal data or the results of analyzing categorical data. For example, the
assocplot () function produces Cohen-Friendly association plots[16][22]. A
much wider range of such functions is provided by the vcd package, which
implements plots from Michael Friendly’s book “Visualizing Categorical
Data”[25].

The plot() method for dendrogram objects is provided for drawing hierar-
chical or tree-like structures, such as the results from clustering or a recursive
partitioning regression tree. The packages rpart[59] and maptree[66] provide
more functions related to this area. The bottom two plots in Figure 2.8 show
examples of output from the plot () method for dendrogram objects.*

2.5 Interactive graphics

The strength of the traditional graphics system lies in the production of static
graphics. There are only limited facilities for interacting with graphical out-
put.

The locator () function allows the user to click within a plot and returns the
coordinates where the mouse click occurred. It will also optionally draw data
symbols at the clicked locations or draw lines between the clicked locations.

The identify () function can be used to add labels to data symbols on a plot.
The data point closest to the mouse click gets labelled.

In R version 2.1.0, there is a getGraphicsEvent () function that provides

*The data used in these examples are measures of crime rates in various US states in
1973, available as the data set USArrests in the datasets package.

@ © 2006 by Taylor & Francis Group, LLC



a more flexible basis for developing interactive plots (currently only for the
Windows graphics device). This function captures key stroke events as well
as mouse events and allows more general event handlers to be written as R
functions.

Several add-on graphics packages provide additional interactive capabilities.
The tcltk package provides a general facility for building GUI components
and this can be used to create interactive graphics. Some of the tcltk de-
mos and the dynamicGraph package[4] provide examples of this approach.
The Rggobi package[33] and the iPlots package[62] provide an alternative
approach by linking R to other graphics software applications that have so-
phisticated interactive features, such as brushing and linking plots[14][58].

Chapter summary

The traditional graphics system has functions to produce the stan-
dard statistical plots such as histograms, scatterplots, barplots, and
piecharts. There are also functions for producing higher-dimensional
plots such as 3D surfaces and contour plots and more specialized or
modern plots such as dotplots, dendrograms, and mosaicplots. In most
cases, the functions provide a number of arguments to allow the user
to control the details of the plot, such as the widths of the boxes in
a boxplot. There are a standard set of arguments for controlling the
appearance of the plot (colors, fonts, line types, etc.) and the labels
and axes on a plot, but these are not all available for all types of plots.

@ © 2006 by Taylor & Francis Group, LLC



3

Customizing Traditional Graphics

Chapter preview

It is very often the case that a high-level plotting function does not
produce exactly the final result that is desired. This chapter describes
low-level traditional functions that are useful for controlling the fine
details of a plot and for adding further output to a plot (e.g., adding
descriptive labels).

In order to utilise these low-level functions effectively, this chapter also
includes a description of the regions and coordinate systems that are
used to locate the output from low-level functions. For example, there
is a description of which function to use to draw text in the margins of
a plot as opposed to drawing text in the data region (where the data
symbols are plotted). There is also a discussion of ways to arrange
several plots together on a single page.

Sometimes it is not possible to achieve a final result by modifying an
existing high-level plot. In such cases, the user might need to create a
plot using only low-level functions. This case is also addressed in this
chapter together with some discussion of how to write a new graphics
function for other people to use.

It is often the case that the default or standard output from a high-level
function is not exactly what the user requires, particularly when producing
graphics for publication. Various aspects of the output often need to be mod-
ified or completely replaced. This chapter describes the various ways in which
the output from a traditional graphics high-level function can be customized
and extended.

@ © 2006 by Taylor & Francis Group, LLC



The real power of the traditional graphics system lies in the ability to control
many aspects of the appearance of a plot, to add extra output to a plot, and
even to build a plot from scratch in order to produce precisely the right final
output.

Section 3.1 introduces important concepts of drawing regions, coordinate sys-
tems, and graphics state that are required for properly working with tradi-
tional graphics at a lower level. Section 3.2 describes how to control aspects
of output such as colors, fonts, line styles, and plotting symbols, and Section
3.3 addresses the problem of placing several plots on the same page. Section
3.4 describes how to customize a plot by adding extra output and Section 3.5
looks at ways to produce entirely new types of plots.

3.1 The traditional graphics model in more detail

In order to explain some of the facilities for customizing plots, it is necessary
to describe more about the model underlying traditional graphics plots.

3.1.1 Plotting regions

In the base graphics system, every page is split up into three main regions: the
outer margins, the current figure region, and the current plot region. Figure
3.1 shows these regions when there is only one figure on the page and Figure
3.2 shows the regions when there are multiple figures on the page.

The region obtained by removing the outer margins from the device is called
the inner region. When there is only one figure, this usually corresponds to the
figure region, but when there are multiple figures the inner region corresponds
to the union of all figure regions.

The area outside the plot region, but inside the figure region is referred to
as the figure margins. A typical high-level function draws data symbols and
lines within the plot region and axes and labels in the figure margins or outer
margins (see Section 3.4 for information on the functions used to draw output
in the different regions).

The size and location of the different regions is controlled either via the par ()
function, or using special functions for arranging plots (see Section 3.3). Spec-
ifying an arrangement of the regions does not usually affect the current plot
as the settings only come into effect when the next plot is started.

@ © 2006 by Taylor & Francis Group, LLC



Figure Region

Figure 3.1
The plot regions in traditional graphics. The outer margins, figure region, and plot
region, when there is a single plot on the page.

@ © 2006 by Taylor & Francis Group, LLC



Outer margin 3

Figure 1 Figure 2

oV | i <
C { ] c
<) . | =2
E : Current Plot Region | Figure 4 E
g | | 5
=] ) | =]
o I : o
Figure 5 Figure 6

Outer margin 1

Figure 3.2

Multiple figure regions in traditional graphics. The outer margins, current figure
region, and current plot region, when there are multiple plots on the page.

@ © 2006 by Taylor & Francis Group, LLC



o -
=)
®
>
>
x
]
= The location (x;, y;)
< — R T °
]
]
]
:
]
() 1
> 1
© |
> 1
> |
£ !
= :
| |
Min x value Xi Max x value

Figure 3.3
The user coordinate system in the plot region. Locations within this coordinate
system are relative to the scales on the plot axes.

Coordinate systems

Each plotting region has one or more coordinate systems associated with it.
Drawing in a region occurs relative to the relevant coordinate system. The
coordinate system in the plot region, referred to as “user coordinates,” is
probably the easiest to understand as it simply corresponds to the range of
values on the axes of the plot (see Figure 3.3). The drawing of data symbols,
lines, text, and so on in the plot region is relative to this user coordinate
system.

The scales on the axes of a plot are often set up automatically by R, but it is
possible to control them explicitly via x1im and ylim arguments to high-level
plotting functions (see Section 2.2.1) or via the usr argument to the par()
function (see Section 3.4.7).

@ © 2006 by Taylor & Francis Group, LLC



The figure margins contain the next most commonly-used coordinate systems.
The coordinate systems in these margins are a combination of x- or y-ranges
(like user coordinates) and lines of text away from the boundary of the plot
region. Figure 3.4 shows two of the four figure margin coordinate systems.
Axes are drawn in the figure margins using these coordinate systems.

There is a further set of “normalized” coordinate systems available for the
figure margins in which the x- and y-ranges are replaced with a range from 0
to 1. In other words, it is possible to specify locations along the axes as a pro-
portion of the total axis length. Axis labels and plot titles are drawn relative
to this coordinate system. All of these figure margin coordinate systems are
created implicitly from the arrangement of the figure margins and the setting
of the user coordinate system.

The outer margins have similar sets of coordinate systems, but locations along
the boundary of the inner region can only be specified in normalized coordi-
nates (always relative to the extent of the complete outer margin). Figure 3.5
shows two of the four outer margin coordinate systems.

Sections 3.4.3 and 3.4.5 describe functions that produce output relative to
these margin coordinate systems.

3.1.2 The traditional graphics state

The traditional graphics system maintains a graphics “state” for each graphics
device. Whenever output is drawn, the graphics state is consulted to deter-
mine where it should be drawn, what color it should be, what fonts to use for
text, and so on.

The graphics state consists of a large number of settings. Some of these
settings describe the size and placement of the plot regions and coordinate
systems described above. Some settings describe the general appearance of
graphical output (the colors and line types that are used to draw lines, the
fonts that are used to draw text, etc). Some settings describe aspects of the
output device (e.g., the physical size of the device and the current clipping
region).

Tables 3.1 to 3.3 together provide a list of all of the graphics state settings and
a very brief indication of their meaning. Most of the settings are described in
detail in Sections 3.2 and 3.3.

The main function used to access the graphics state is the par() function.
Simply typing par () will result in a complete listing of the current graphics
state. A specific state setting can be queried by supplying specific setting
names as arguments to par(). The following code (page 52) queries the
current state of the col and 1ty settings.

@ © 2006 by Taylor & Francis Group, LLC



xmin Xxmax
| |

0 lines Figure
Margin
3 lines 1
—ymax
Figure
Margin
2
T ymin

3lines 0 lines

Figure 3.4

Figure margin coordinate systems. The typical coordinate systems for figure margin
1 (top plot) and figure margin 2 (bottom plot). Locations within these coordinate
systems are a combination of position along the axis scale and distance away from
the axis in multiples of lines of text.

@ © 2006 by Taylor & Francis Group, LLC



0 lines
Outer Margin 1

3 lines

Outer
Margin

—— 10
3 lines O lines

Figure 3.5

Outer margin coordinate systems. The typical coordinate systems for outer margin
1 (top plot) and outer margin 2 (bottom plot). Locations within these coordinate
systems are a combination of a proportion along the inner region and distance away
from the inner region in multiples of lines of text.

@ © 2006 by Taylor & Francis Group, LLC



Table 3.1

High-level traditional graphics state settings. This set of graphics state
settings can be queried and set via the par() function and can be used
as arguments to other graphics functions (e.g., plot () or lines()). Each
setting is described in more detail in the relevant Section.

Setting Description Section
adj justification of text 3.2.3
ann draw plot labels and titles? 3.2.3
bg “background” color 3.2.1
bty type of box drawn by box () 3.2.5
cex size of text (multiplier) 3.2.3
cex.axis size of axis tick labels 3.2.3
cex.lab size of axis labels 3.2.3
cex.main  size of plot title 3.2.3
cex.sub size of plot sub-title 3.2.3
col color of lines and data symbols 3.2.1
col.axis color of axis tick labels 3.2.1
col.lab color of axis labels 3.2.1
col.main  color of plot title 3.2.1
col.sub color of plot sub-title 3.2.1
fg “foreground” color 3.2.1
font font face (bold, italic) for text 3.2.3
font.axis font face for axis tick labels 3.2.3
font.lab font face for axis labels 3.2.3
font.main font face for plot title 3.2.3
font.sub font face for plot sub-title 3.2.3
gamma gamma correction for colors 3.2.1
lab number of ticks on axes 3.2.5
las rotation of text in margins 3.2.3
1ty line type (solid, dashed) 3.2.2
lwd line width 3.2.2
mgp placement of axis ticks and tick labels 3.2.5
pch data symbol type 3.24
srt rotation of text in plot region 3.2.3
tck length of axis ticks (relative to plot size) 3.2.5
tcl length of axis ticks (relative to text size) 3.2.5
tmag size of plot title (relative to other labels) 3.2.3
type type of plot (points, lines, both) 3.24
xaxp number of ticks on x-axis 3.2.5
Xaxs calculation of scale range on x-axis 3.2.5
xaxt x-axis style (standard, none) 3.2.5
xpd clipping region 3.2.7
yaxp number of ticks on y-axis 3.2.5
yaxs calculation of scale range on y-axis 3.2.5
yaxt y-axis style (standard, none) 3.2.5

@ © 2006 by Taylor & Francis Group, LLC



> par(c("col" R nltyn))

$col
[1] "black"

$1ty
[1] "solid"

The par () function can be used to modify traditional graphics state settings
by specifying a value via an argument with the appropriate setting name. The
following code sets new values for the col and 1ty settings.

> par(col="red", 1lty="dashed")

Modifying traditional graphics state settings via par () has a persistent effect.
Settings specified in this way will hold until a different setting is specified.
Settings may also be temporarily modified by specifying a new value in a
call to a graphics function such as plot() or lines(). The following code
demonstrates this idea. First of all, the line type is permanently set using
par (), then a plot is drawn and the lines drawn between data points in this
plot are dashed. Next, a plot is drawn with a temporary line type setting
of 1ty="so0lid" and the lines in this plot are solid. When the third plot is
drawn, the permanent line type setting of 1ty="dashed" is back in effect so
the lines are again dashed.

y <- rnorm(20)

par(1ty="dashed")

plot(y, type="1") # line is dashed

plot(y, type="1", lty="solid") # line is solid
plot(y, type="1") # line is dashed

V V V V V

Only some of the graphics state settings can be set temporarily in calls to
graphics functions. For example, the mfrow setting may not be set in this way
and can only be set using par (). These “low level” settings are listed in Table
3.2.

A small set of graphics state settings cannot be set at all and can only be
queried using par (). For example, there is no function to allow the user to
modify the size of the current device (after the device has been created), but
its size (in inches) may be obtained using par("din"). These “read only”
settings are listed in Table 3.3.

Changes to the traditional graphics state only affect the current graphics
device.

@ © 2006 by Taylor & Francis Group, LLC



Table 3.2

Low-level traditional graphics state settings. This set of graphics
state settings can be queried and set via the par() function. Each
setting is described in more detail in the relevant Section.

Setting Description Section
ask prompt user before new page? 3.2.8
family font family for text 3.2.3
fig location of figure region (normalized) 3.2.6
fin size of figure region (inches) 3.2.6
lend line end style 3.2.2
lheight line spacing (multiplier) 3.2.3
ljoin line join style 3.2.2
Imitre line mitre limit 3.2.2
mai size of figure margins (inches) 3.2.6
mar size of figure margins (lines of text) 3.2.6
mex line spacing in margins 3.2.6
mfcol number of figures on a page 3.3.1
mfg which figure is used next 3.3.1
mfrow number of figures on a page 3.3.1
new has a new plot been started? 3.2.8
oma size of outer margins (lines of text) 3.2.6
omd location of inner region (normalized) 3.2.6
omi size of outer margins (inches) 3.2.6
pin size of plot region (inches) 3.2.6
plt location of plot region (normalized) 3.2.6
ps size of text (points) 3.2.3
pty aspect ratio of plot region 3.2.6
usr range of scales on axes 3.4.7
xlog logarithmic scale on x-axis? 3.2.5
ylog logarithmic scale on y-axis? 3.2.5
Table 3.3

Read-only traditional graphics state settings. This set of graphics
state settings can only be queried (via the par() function). Each
setting is described in more detail in the relevant Section.

Setting Description Section
cin size of a character (inches) 3.4.7
cra size of a character (“pixels”) 3.4.7
cxy size of a character (user coordinates) 3.4.7
din size of graphics device (inches) 3.4.7

@ © 2006 by Taylor & Francis Group, LLC



3.2 Controlling the appearance of plots

This section is concerned with the appearance of plots, which means the colors,
line types, fonts and so on that are used to draw a plot. As described in Section
3.1.2, these features are controlled via traditional graphics state settings and
values are specified for the settings either with a call to the par() function
or as arguments to a specific graphics function such as plot (). For example,
there is a setting called col to control the color of output (see the next section).
This can be set permanently using par () with an expression of the form

par(col="red")

which will affect all subsequent graphical output. Alternatively, the setting
can be specified as an argument to a high-level function using an expression
like

plot(..., col="red")

which means that the setting will affect the output just for that plot. Finally,
the setting can be used as an argument to a low-level function, as in the
expression

lines(..., col="red")

which shows that the setting can be used to control the appearance of a single
piece of graphical output.

There are many individual settings that affect the appearance of a plot, but
they can be grouped in terms of what aspects of a plot the settings affect.
Each of the following sections details a particular group of settings, including
a description of the role of individual settings and descriptions of what con-
stitutes valid values for each setting. There are sections on: specifying colors;
how to control the appearance of lines, text, data symbols, and axes; how to
control the size and location of the various plotting regions; clipping (only
drawing output on certain parts of the page); and specifying what should
happen when a high-level function is called to start a new plot.

The appearance of plots is also affected by the location and size of the plotting
regions, but this is dealt with separately in Section 3.3.

This section is not meant to be read from start to end as it is very detailed.
This section should be used as a reference tool to access the relevant subsec-

@ © 2006 by Taylor & Francis Group, LLC



tions as they are required to learn about controlling a particular aspect of a
plot.

3.2.1 Colors

There are three main color settings in the traditional graphics state: col, fg,
and bg.

The col setting is the most commonly used. The primary use is to specify
the color of data symbols, lines, text, and so on that are drawn in the plot
region. Unfortunately, when specified via a graphics function, the effect can
vary. For example, a standard scatterplot produced by the plot () function
will use col for coloring data symbols and lines, but the barplot () function
will use col for filling the contents of its bars. In the rect() function, the
col argument provides the color to fill the rectangle and there is a border
argument specific to rect () that gives the color to draw the border of the
rectangle. The effect of col on graphical output drawn in the margins also
varies. It does not affect the color of axes and axis labels, but it does affect
the output from the mtext () function. There are specific settings for affecting
axes, labels, titles, and sub-titles called col.axis, col.lab, col.main, and
col.sub.

The fgsetting is primarily intended for specifying the color of axes and borders
on plots. There is some overlap between this and the specific col.axis,
col.main, etc. settings described above.

The bg setting is primarily intended to specify the color of the background
for base graphics output. This color is used to fill the entire page. As with
the col setting, when bg is specified in a graphics function it can have a quite
different meaning. For example, the plot () and points() function use bg to
specify the color for the interior of the data symbols, which can have different
colors on the border (pch values 21 to 25; see Section 3.2.4).

There is also a gamma setting that controls the gamma correction for a device.
On most devices this can only be set once when the device is first opened.

Specifying colors

The easiest way to specify a color in R is simply to use the color’s name. For
example, "red" can be used to specify that graphical output should be (a
very bright) red. R understands a fairly large set of color names (657 to be
exact); type colors() (or colours()) to see a full list of known names.

It is also possible to specify colors using one of the standard color-space de-
scriptions. For example, the rgb() function allows a color to be specified as

@ © 2006 by Taylor & Francis Group, LLC



a Red-Green-Blue (RGB) triplet of intensities. Using this function, the color
red is specified as rgb(1, 0, 0) (i.e., as much red as possible, no blue, and
no green). The function col2rgb() can be used to see the RGB values for a
particular color name.

An alternative way to provide an RGB color specification is to provide a
string of the form "#RRGGBB", where each of the pairs RR, GG, BB consist of
two hexadecimal digits giving a value in the range zero (00) to 255 (FF). In
this specification, the color red is given as "#FF0000".

There is also an hsv() function for specifying a color as a Hue-Saturation-
Value (HSV) triplet. The terminology of color spaces is fraught, but roughly
speaking: hue corresponds to a position on the rainbow, from red (0),
through orange, yellow, green, blue, indigo, to violet (1); saturation deter-
mines whether the color is dull or bright; and value determines whether the
color is light or dark. The HSV specification for the (very bright) color red is
hsv(0, 1, 1). The function rgb2hsv() converts a color specification from
RGB to HSV.

There is also a convertColor () function for converting colors between dif-
ferent color spaces, including the CIELAB and CIELUYV color spaces[46], in
which a unit distance represents a perceptually constant change in color. The
hcl () function allows colors to be specified directly as polar coordinates within
CIELUV (as a hue, chroma, and luminance triplet). This is like a perceptually
uniform version of HSV.* Ross Thaka’s colorspace package[31] provides an
alternative set of functions for generating, converting, and combining colors
in a sophisticated manner in a wide variety of color spaces.

One final way to specify a color is simply as an integer index into a predefined
set of colors. The predefined set of colors can be viewed and modified using
the palette() function. In the default palette, red is specified as the integer
2.

Semitransparent colors

All R colors are stored with an alpha transparency channel. An alpha value of
0 means fully transparent and an alpha value of 17 means fully opaque. When
an alpha value is not specified, the color is opaque.

The function rgb () can be used to specify a color with an alpha transparency

*The hel() function is only available from R version 2.1.0.

fThe maximum alpha value depends on the method being used to specify a color. When
a color is specified via rgb(), the user can decide what the maximal value should be (it
defaults to 1). When a color is specified as a string beginning with a "#", the maximum
value is "FF".

@ © 2006 by Taylor & Francis Group, LLC



Table 3.4
Functions to generate color sets. R functions that can be used to generate coher-
ent sets of colors

Name Description

rainbow() Colors vary from red through orange, yellow,
green, blue, and indigo, to violet.

heat.colors() Colors vary from white, through orange, to red.

terrain.colors() Colors vary from white, through brown, to green.

topo.colors() Colors vary from white, through brown then green,
to blue.

cm.colors() Colors vary from light blue, through white, to light
magenta.

grey() or gray() A set of shades of grey.

channel (e.g., rgb(1, 0, 0, 0.5) specifies a semitransparent red), or a color
can be specified as a string beginning with a "#" and followed by eight hex-
adecimal digits. In the latter case, the last two hexadecimal digits specify an
alpha value in the range 0 to 255 (e.g., "#FF000080" specifies a semitranspar-
ent red).

A color may also be specified as NA, which is usually interpreted as fully
transparent (i.e., nothing is drawn). The special color name "transparent"
can also be used to specify full transparency.

Only the PDF and Quartz devices support semitransparent colors. On all
other devices, semitransparent colors are rendered as fully transparent.

Color sets

More than one color is often required within a single plot and in such cases it
can be difficult to select colors that are aesthetically pleasing or are related in
some way (e.g., a set of colors in which the brightness of the colors decreases in
regular steps). Table 3.4 lists some functions that R provides for generating
sets of colors. The output of the expression example(rainbow) provides a
nice visual summary of the color sets generated by several of these functions.

Each of the functions in Table 3.4 selects a set of colors by taking regular
steps along a path through the HSV color space. This can produce color sets
that do not appear to vary smoothly. A perceptually constant color space
makes it easier to generate sets of colors with even perceptual steps between

@ © 2006 by Taylor & Francis Group, LLC



them or a set of colors that do not vary on a particular perceptual dimension.
For example, the following code generates six colors from the CIELUV color
space that vary regularly in terms of hue, but are all equally bright (the chroma
component is fixed at 50) and all equally light (the luminance component is
fixed at 60).

> hcl(seq(0, 360, length=7)[-7], 50, 60)

[1] "#C87ABA" "#ACSC4E" "#6BID59" "#00A396" "#5F96C2"
[6] "#B37EBE"

The RColorBrewer package[47] provides color palettes from Cynthia Brewer’s
ColorBrewer tool[27]. The ColorBrewer color sets have been carefully selected
by a color expert and include distinct palettes for representing nominal and
ordinal categories.

The functions colorRamp() and colorRampPalette() can be used to inter-
polate a new color set from an existing set of colors (e.g., create additional
colors from within a ColorBrewer palette).*

Device Dependency of Color Specifications

R stores colors internally as RGB triplets. The final appearance of a color
can vary considerably when it is viewed on a screen, or printed on paper, or
displayed through a projector as it depends on the physical characteristics of
the screen, printer ink, or projector.

Fill patterns

In some cases (e.g., when printing in black and white), it is difficult to make
use of different colors to distinguish between different elements of a plot. Using
different levels of grey can be effective, but another option is to make use of
some sort of fill pattern, such as cross-hatching. These should be used with
caution because it is very easy to create visual effects that are distracting.
Nevertheless, some journals actively encourage their use, so the facility has
some purpose.

In R, there is only limited support for fill patterns and they can only be
applied to rectangles and polygons (and only within the traditional graphics

*The functions colorRamp(), colorRampPalette(), and convertColor() are not avail-
able before R version 2.1.0, but some color ramp functionality is available in the hexbin
package[10], which is part of the BioConductor project.

@ © 2006 by Taylor & Francis Group, LLC



system). It is possible to fill a rectangle or polygon with a set of lines drawn
at a certain angle, with a specific separation between the lines. A density
argument controls the separation between the lines (in terms of lines per inch)
and an angle argument controls the angle of the lines (in terms of degrees
clockwise from 3 o’clock). Examples of the use of fill patterns are given in
Figures 2.4, 3.20, and their associated code.

These settings can only be controlled via arguments to the functions rect (),
polygon(), hist (), barplot (), pie(), and legend () (and not via par()).

3.2.2 Lines

There are five graphics state settings for controlling the appearance of lines.
The 1ty setting describes the type of line to draw (solid, dashed, dotted, ...),
the 1wd setting describes the width of lines, and the 1join, lend, and lmitre
settings control how the ends and corners in lines are drawn (see below).

The scope of these settings again differs depending on the graphics function
being called. For example, for standard scatterplots, the setting only applies
to lines drawn within the plot region. In order to affect the lines drawn as part
of the axes, the 1ty setting must be passed directly to the axis() function.

Specifying line widths

The width of lines is specified by a simple numeric value, e.g., 1lwd=3. The
interpretation of this value depends on what sort of device the line is being
drawn on. In other words, the physical width of the line may be different
when the line is drawn on a computer screen compared to when it is printed
on a sheet of paper. On a computer screen, a line width of 1 will typically
mean one pixel. For PostScript and PDF output, a line width of 1 produces
a line 0.75 points wide. The default value is 1.

Specifying line types

R graphics supports a fixed set of predefined line types, which can be specified
by name, such as "solid" or "dashed", or as an integer index (see Figure
3.6). In addition, it is possible to specify customized line types via a string of
digits. In this case, each digit is a hexadecimal value that indicates a number
of “units” to draw either a line or a gap. Odd digits specify line lengths and
even digits specify gap lengths. For example, a dotted line is specified by
1ty="13", which means draw a line of length one unit then a gap of length
three units. A unit corresponds to the current line width, so the result scales
with line width, but is device-dependent. Up to four such line-gap pairs can

@ © 2006 by Taylor & Francis Group, LLC



be specified. Figure 3.6 shows the available predefined line types and some
examples of customized line types.

Specifying line ends and joins

When drawing thick lines, it becomes important to select the style that is
used to draw corners (joins) in the line and the ends of the line. R provides
three styles for both cases: there is an 1lend setting to control line ends, which
can be "round" or flat (with two variations on flat, "square" or "butt"); and
there is an 1join setting to control line joins, which can be "mitre" (pointy),
"round", or "bevel". The differences are most easily demonstrated visually
(see Figure 3.7).

When the line join style is "mitre", the join style will automatically be con-
verted to "bevel" if the angle at the join is too small. This is to avoid
excessively pointy joins. The point at which the automatic conversion occurs
is controlled by a setting called lmitre, which specifies the ratio of the length
of the mitre divided by the line width. The default value is 10, which means
that the conversion occurs for joins where the angle is less than 11 degrees.
Other standard values are 2, which means that conversion occurs at angles less
than 60 degrees, and 1.414, which means that conversion occurs for angles
less than 90 degrees. The minimum mitre limit value is 1.

These settings can only be specified via par() (not as arguments to high-
level or low-level graphics functions) and not all devices will respect them
(especially the line mitre limit).

It is important to remember that line join styles influence the corners on
rectangles and polygons as well as joins in lines.

3.2.3 Text

There are a large number of traditional graphics state settings for controlling
the appearance of text. The size of text is controlled via ps and cex; the font
is controlled via font and family; the justification of text is controlled via
adj; and the angle of rotation is controlled via srt.

There is also an ann setting, which indicates whether titles and axis labels
should be drawn on a plot. This is intended to apply to high-level functions,
but is not guaranteed to work with all such functions (especially functions
from add-on graphics packages). There are examples of the use of ann as an
argument to high-level plotting functions in Section 3.4.

@ © 2006 by Taylor & Francis Group, LLC



Integer Sample line String

Predefined
0 "blank"
1 "solid"
) ceeececececa=-. "dashed"
3 .................. "dotted"
4 = mimimim- - "dotdash"
FE —m———— — "longdash"
6 ~—mr—mr—mr—e—a—. "twodash"
Custom
.................. nq3"
- "F8"
— i "431313"
......... — "22848222"

Figure 3.6

Predefined and custom line types. Line type may be specified as a predefined integer,
as a predefined string name, or as a string of hexadecimal characters specifying a
custom line type.

@ © 2006 by Taylor & Francis Group, LLC



Figure 3.7

Line join and line ending styles. Three thick lines have been drawn through the
same three points (indicated by black circles), but with different line end and line
join styles. The black line was drawn first with "square" ends and "mitre" joins;
the dark grey line was drawn on top of the black line with "round" ends and "round"
joins; and the light grey line was drawn on top of that with "butt" ends and "bevel"
joins.

Justification of text

The adj setting is a value from 0 to 1 indicating the horizontal justification
of text strings (0 means left-justified, 1 means right-justified and a value of
0.5 centers text).

The meaning of the adj setting depends on whether text is being drawn in
the plot region, in the figure margins, or in the outer margins. In the plot
region, the justification is relative to the (x, y) location at which the text
is being drawn. In this context, it is also possible to specify two values for
the setting and the second value is taken as a vertical justification for the
text. Furthermore, non-finite values (NA, NaN, or Inf) may be specified for
the justification and this is taken to mean “exact” centering. There is only
a difference between a justification value of 0.5 and a non-finite justification
value for vertical justification. In this case, a setting of 0.5 means text is
vertically centered based on the height of the text above the text baseline
(i.e., ignoring “descenders” like the tail on a “y”). A non-finite value means
that text is vertically centered based on the full height of the text (including
descenders). Figure 3.8 shows how various adj settings affect the alignment
of text in the plot region.

In the figure margins and outer margins, the meaning of the adj setting

@ © 2006 by Taylor & Francis Group, LLC



c(0, 1) (0, 0.5) c(0, NA) c(0, 0)

c(NA, 1) c(NA,;0.5)  c(NA, NA) c(NA, 0)

c(0.5, 1) c(0.5,0.5) c(0:5,NA) c(0.5, 0)

o(1, 1) c(1, 0.5) c(1, NA) c(1,0)

Figure 3.8

Alignment of text in the plot region. The adj graphical setting may be given two
values, c(hjust, vjust), where hjust specifies horizontal justification and wvjust spec-
ifies vertical justification. Each piece of text in the diagram is justified relative to a
grey cross to represent the effect of the relevant adj setting. The vertical adjustment
for NA is subtly different from the vertical adjustment for 0.5.

@ © 2006 by Taylor & Francis Group, LLC



depends on the las setting. When margin text is parallel to the axis, adj
specifies both the location and the justification of the text. For example, a
value of 0 means that the text is left-justified and that the text is located at
the left end of the margin. When text is perpendicular to the axis, the adj
setting only affects justification. Furthermore, the adj setting only affects
“horizontal” justification (justification in the reading direction) for text in the
margins.

Rotating text

The srt setting specifies a rotation angle clockwise from the positive x-axis,
in degrees (not radians). This will only affect text drawn in the plot region
(text drawn by the text () function). Text can be drawn at any angle within
the plot region.

In the figure and outer margins, text may only be drawn at angles that are
multiples of 90°, and this angle is controlled by the las setting. A value of
0 means text is always drawn parallel to the relevant axis (i.e., horizontal in
margins 1 and 3, and vertical in margins 2 and 4). A value of 1 means text is
always horizontal, 2 means text is always perpendicular to the relevant axis,
and 3 means text is always vertical. This setting interacts with or overrides
the adj and srt settings.

Text size

The size of text is ultimately a numerical value specifying the size of the font
in “points.” The font size is controlled by two settings: ps specifies an absolute
font size setting (e.g., ps=9), and cex specifies a multiplicative modifier (e.g.,
cex=1.5). The final font size specification is simply fontsize * cex. On
some devices, the font size that is specified will not be honored exactly. For
example, when drawing in an X11 window with bitmap fonts, there are only
a finite set of font sizes available and this set will vary depending on which
fonts are installed. For the PostScript and PDF formats, font sizes should be
accurate.

As with specifying color, the scope of a cex setting can vary depending on
where it is given. When cex is specified via par(), it affects most text.
However, when cex is specified via plot(), it only affects the size of data
symbols. There are special settings for controlling the size of text that is drawn
as axis tick labels (cex.axis), text that is drawn as axis labels (cex.lab),
text in the title (cex.main), and text in the sub-title (cex.sub). Finally, there
is a tmag setting for controlling the amount to magnify title text relative to
other plot labels.

@ © 2006 by Taylor & Francis Group, LLC



Multi-line text

It is possible to draw text that spans several lines, by inserting a new line
escape sequence, "\n", within a piece of text, as in the following example.

"first line\nsecond line"

The spacing between lines is controlled by the 1height setting, which is a mul-
tiplier applied to the natural height of a line of text. For example, Theight=2
specifies double-spaced text. This setting can only be specified via par().

Specifying fonts

Specifying an exact font may involve several pieces of information and is very
device-specific. A font is usually part of a font “family” (e.g. Helvetica or
Courier) and is a particular “face” within that family (e.g., bold or italic).
It is also possible to specify things like the font format (e.g., TrueType or
Computer Modern), the font encoding (e.g., ISO Latin 1), and even the font
foundry or designer (e.g., Adobe or Sun Microsystems).

In R graphics, it is possible to specify the font face and a font family. On
some devices, the latter can include extra details such as encoding.

The font face is specified via the font setting as an integer (Table 3.5 shows
the possible values). As with color and text size, the font setting applies only
to text drawn in the plot region. There are additional settings specifically for
axes (font.axis), labels (font.lab), and titles (font.main and font.sub).

Every graphics device establishes a default font family, which is usually a
sans serif font such as Helvetica or Arial. A new font family is specified via
the family setting using a device-independent name. The names "sans",
"serif", "mono", and "symbol" are available for the most common devices*
and provide a sans serif font, a serif font, a monospaced font, and a symbol
font respectively (see Table 3.6).

Figure 3.9 demonstrates the 16 basic font family and face combinations.f

The device-independent font name is mapped to a device-dependent font fam-
ily by individual devices. These mappings can be modified and new font
names and mappings defined using functions such as postscriptFont () and
postscriptFonts().

*Windows, X11, Quartz, PDF, and PostScript.

TThe fact that there is a font specification provided for all standard devices does not
mean that a matching font will always be available. There can be significant differences
between operating systems and locales in terms of which fonts are installed by default.

@ © 2006 by Taylor & Francis Group, LLC



Table 3.5

Possible font face specifications in traditional graphics. The font face must
be specified as an integer, usually between 1 and 4. The special value 5
indicates that a symbol font should be used. The range of valid font faces
varies for different Hershey fonts, but the maximum valid value is usually
4 or less. When the font family is "HersheySerif", there are a number of

special font faces available.

Integer

Description

ad W=

Symbol

Roman or upright face
Bold face

Slanted or italic face
Bold and slanted face

For the HersheySerif font family
5 Cyrillic font
6 Slanted Cyrillic font
7 Japanese characters

Table 3.6

Device-independent and Hershey font families that are distributed
with R. A font family is specified as a string

Name

Description

Device-independent fonts

"serif" Serif variable-width font
"sans" Sans-serif variable-width font
"mono" Mono-spaced “typewriter” font
"symbol" Symbol font

Hershey fonts

"HersheySerif" Serif variable-width font
"HersheySans" Sans-serif variable-width font
"HersheyScript" Serif “handwriting” font
"HersheyGothicEnglish" Gothic script font
"HersheyGothicGerman"  Gothic script font
"HersheyGothicItalian" Gothic script font
"HersheySymbol" Serif symbol font
"HersheySansSymbol" Sans-serif symbol font

@ © 2006 by Taylor & Francis Group, LLC



ooAY=YovoV

dovt=1

family="mono"

font=1

family="serif"

font=1

family="sans"

font=1

Figure 3.9

Font families and font faces. The appearance of the base sixteen font family and
font face combinations that are available for X11, PDF, PostScript, Windows, and

oouAY=YovoV

bovt=2

family="mono"

font=2

family=""serif"

font=2

family="sans"
font=2

oopAy=vuovoV

bovt=3

family="mono"

font=3

Sfamily="serif"
font=3

family="sans"

font=3

doAy=VovoV

dovt=4

family="mono"

font=4

Sfamily="serif"

font=4

family="sans"
font=4

Quartz graphics devices (the output shown is for the PostScript device).

@ © 2006 by Taylor & Francis Group, LLC



The Hershey outline fonts[1] are also distributed with R and are available for
all output formats. The names to use with the family setting to obtain the
different Hershey fonts are shown in Table 3.6. See the on-line help page for
Hershey for more information on Hershey fonts.

The family setting can only be specified via par () (not as an argument to a
high-level plotting function).

Locales

From R version 2.1.0, there is support for multi-byte locales, such as UTF-8
locales and East Asian locales (Chinese, Japanese, and Korean). This means
that strings can be specified in R that contain characters outside of the ISO
Latin 1 character set that R was restricted to prior to version 2.1.0. Such
characters cannot be produced within graphical output on all devices.

As long as the appropriate fonts are available, it should be possible to produce
characters outside of the ISO Latin 1 set for X11, Windows, and Quartz
devices, but PostScript and PDF output can only be produced for ISO Latin
1 characters.

3.2.4 Data symbols

R provides a fixed set of 26 data symbols for plotting and the choice of data
symbol is controlled by the pch setting. This can be an integer value to select
one of the fixed set of data symbols, or a single character (see Figure 3.10).
Some of the predefined data symbols (pch between 21 and 25) allow a fill color
separate from the border color, with the bg setting controlling the fill color
in these cases. If pch is a character then that letter is used as the plotting

symbol. The character "." is treated as a special case and the device attempts
to draw a very small dot (see, for example, the scatterplot matrix in Figure
2.7).

The size of the data symbols is linked to the size of text and is affected by the
cex setting. If the data symbol is a character, the size will also be affected by
the ps setting.

The type setting controls how data is represented in a plot. A value of "p"
means that data symbols are drawn at each (x, y) location. The value "1"
means that the (x, y) locations are connected by lines. A value of "b" means
that both data symbols and lines are drawn. The pch setting may also have
the value "o", which means that data symbols are “over-plotted” on lines (with
the value "b", the lines stop short of each data symbol). It is also possible
to specify the value "h", which means that vertical lines are drawn from the

@ © 2006 by Taylor & Francis Group, LLC



Figure 3.10

Data symbols available in R. A particular data symbol is selected by specifying an
integer between 0 and 25 or a single character for the pch graphical setting. In the
diagram, the relevant integer or character pch value is shown in grey to the left of
the relevant symbol.

@ © 2006 by Taylor & Francis Group, LLC



x-axis to the (x, y) locations (the appearance is like a barplot with very
thin bars). Two further values, "s" and "S" mean that (x, y) locations are
joined in a city-block fashion with lines going horizontally then vertically (or
vertically then horizontally) between each data location. Finally, the value
"n" means that nothing is drawn at all.

Figure 3.11 shows simple examples of the different plot types. This setting is
most often specified within a call to a high-level function (e.g., plot ()) rather
than via par().

3.2.5 Axes

By default, the traditional graphics system produces axes with sensible labels
and tick marks at sensible locations. If the axis does not look right, there are
a number of graphical state settings specifically for controlling aspects such as
the number of tick marks and the positioning of labels. These are described
below. If none of these gives the desired result, the user may have to resort
to drawing the axis explicitly using the axis() function (see Section 3.4.5).

The lab setting in the traditional graphics state is used to control the number
of tick marks on the axes. The setting is only used as a starting point for the
algorithm R uses to determine sensible tick locations so the final number of
tick marks that are drawn could easily differ from this specification. The
setting takes two values: the first specifies the number of tick marks on the
x-axis and the second specifies the number of tick marks on the y-axis.

The xaxp and yaxp settings also relate to the number and location of the tick
marks on the axes of a plot. This setting is almost always calculated by R
for each new plot so user settings are usually overridden (see Section 3.4.5 for
an exception to this rule). In other words, it only makes sense to query this
setting for its current value. The settings consist of three values: the first two
specify the location of the left-most and right-most tick-marks (bottom and
top tick-marks for the y-axis), and the third value specifies how many intervals
there are between tick marks. When a log transformation is in effect for an
axis, the three values have a different meaning altogether (see the on-line help
page for par()).

The mgp setting controls the distance that the components of the axes are
drawn away from the edge of the plot region. There are three values repre-
senting the positioning of the overall axis label, the tick mark labels, and the
lines for the ticks. The values are in terms of lines of text away from the edges
of the plot region. The default value is c(3, 1, 0). Figure 3.12 gives an
example of different mgp settings.

The tck and tcl settings control the length of tick marks. The tcl setting

@ © 2006 by Taylor & Francis Group, LLC



type="p" type="1"

OoO
(o] o
o o
(e] (o]
o (o]

type=llbll type=lloll
o- 0. o
0/ \O
/ \
/A
/ \
type=llhll type="S"

Figure 3.11

Basic plot types. Plotting the same data with different plot type settings. In
each case, the output is produced by an expression of the form plot(x, vy,
type=something), where the relevant value of type is shown above each plot.

@ © 2006 by Taylor & Francis Group, LLC



mgp=c(3, 1, 0)

xaxs="r" Xaxs="i
tcl=-0.5
I T I [ T |
0.0 0.5 1.0 0.0 0.5 1.0
X-axis Label X-axis Label

mgp=c(2, 0.3, 0)

tcl=0.3

0.0 0.5 1.0

X-axis Label

Figure 3.12

Different axis styles. The top-left plot demonstrates the default axis settings for
an x-axis. The top-right plot shows the effect of specifying an “internal” axis range
calculation and the bottom-left plot shows the effects of specifying different positions
for the axis labels and different lengths for the tick marks.

@ © 2006 by Taylor & Francis Group, LLC



specifies the length of tick marks as a fraction of the height of a line of text.
The sign dictates the direction of the tick marks — a negative value draws
tick marks outside the plot region and a positive value draws tick marks inside
the plot region. The tck setting specifies tick mark lengths as a fraction of
the smaller of the physical width or height of the plotting region, but it is
only used if its value is not NA (and it is NA by default). Figure 3.12 gives an
example of different tcl settings.

The xaxs and yaxs settings control the “style” of the axes of a plot. By
default, the setting is "r", which means that R calculates the range of values
on the axis to be wider than the range of the data being plotted (so that data
symbols do not collide with the boundaries of the plot region). It is possible
to make the range of values on the axis exactly match the range of values in
the data, by specifying the value "i". This can be useful if the range of values
on the axes are being explicitly controlled via x1im or ylim arguments to a
function. Figure 3.12 gives an example of different xaxs settings.

The xaxt and yaxt settings control the “type” of axes. The default value,
"s", means that the axis is drawn. Specifying a value of "n" means that the
axis is not drawn.

The x1log and ylog settings control the transformation of values on the axes.
The default value is FALSE, which means that the axes are linear and values
are not transformed. If this value is TRUE then a logarithmic transformation
is applied to any values on the relevant dimension in the plot region. This
also affects the calculation of tick mark locations on the axes.

When data of a special nature are being plotted (e.g., time series data), some
of these settings may not apply (and may not have any sensible interpretation).

The bty setting is not strictly to do with axes, but it controls the output
of the box() function, which is most commonly used in conjunction with
drawing axes. This function draws a bounding box around the edges of the
plot region (by default). The bty setting controls the type of box that the
box () function draws. The value can be "n", which means that no box is
drawn, or it can be one of "o", "1", "7" "c" "u", or "]", which means that
the box drawn resembles the corresponding uppercase character. For example,
bty="c" means that the bottom, left, and top borders will be drawn, but the
right border will not be drawn.

In addition to these graphics state settings, many high-level plotting functions,
e.g., plot (), provide arguments x1lim and ylim to control the range of the
scale on the axes. Section 2.2.2 has an example.

@ © 2006 by Taylor & Francis Group, LLC



3.2.6 Plotting regions

As described in Section 3.1.1, the traditional graphics system defines several
different regions on the graphics device. This section describes how to control
the size and layout of these regions using graphics state settings. Figure 3.13
shows a diagram of some of the settings that affect the widths and horizontal
placement of the regions.

Outer margins

By default, there are no outer margins on a page. Outer margins can be
specified using the oma graphics state setting. This consists of four values for
the four margins in the order (bottom, left, top, right) and values are
interpreted as lines of text (a value of 1 provides space for one line of text
in the margin). The margins can also be specified in inches using omi or in
normalized device coordinates (i.e., as a proportion of the device region) using
omd. In the latter case, the margins are specified in the order (left, right,
bottom, top).

Figure regions

By default, the figure region is calculated from the settings for the outer
margins, and the number of figures on the page. The figure region can be
specified explicitly using either the fig setting or the fin state setting. The
fig setting specifies the location, (left, right, bottom, top), of the figure
region where each value is a proportion of the “inner” region (the page less
the outer margins). The fin setting specifies the size, (width, height), of
the figure region in inches and the resulting figure region is centered within
the inner region.

Figure margins

The figure margins can be controlled using the mar state setting. This consists
of four values for the four margins in the order (bottom, left, top, right)
where each value represents a number of lines of text. The default is c(5,
4, 4, 2) + 0.1. The margins may also be specified in terms of inches using
mai.

The mex setting controls the size of a “line” in the margins. This does not
affect the size of text drawn in the margins, but is used to multiply the size
of text to determine the height of one line of text in the margins.

@ © 2006 by Taylor & Francis Group, LLC



fin[1]
oma [2] : pin[1] i loma [4]
omi [2] : : E lomi [4]
: | 4
mar [2] : : £
mail2] | : =
[ 1 :
1 1 (.U
: B
plt[1] ' ]
omd[1] b R
plt[2]
omd [2]

Figure 3.13

Graphics state settings controlling plot regions. These are some of the settings that
control the widths and horizontal locations of the plot regions. For ease of com-
parison, this diagram has the same layout as Figure 3.1: the central grey rectangle
represents the plot region, the lighter grey